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Chapter 1

Introduction

Recent verification research at NASA Langley has emphasized theorem proving over the

domain of reals [3, 4, 7], with PVS [13, 16] serving as the primary proof tool. Efforts in

this area have met with some difficulties, prompting a search for improved techniques for

interactive proving. Signifcant productivity gains will be needed to fully realize our formal

methods goals.

For arithmetic reasoning, PVS relies on decision procedures augmented with automatic

rewriting. When a conjecture fails to yield to these tools, which often happens with nonlin-

ear arithmetic, considerable interactive work may be required to complete the proof. Large

productivity variances are the result.

SRI continues to increase the degree of automation in PVS. In particular, decision

procedures for real arithmetic are a planned future enhancement. We look forward to these

improvements. Nevertheless, there will always be a point where the automation runs out.

When that point is reached, the tactic-based I techniques of this report can be applied to

good effect. Moreover, the basic approach is general enough to work for provers other than

PVS.

We have constructed a prototype implementation of an algebraic simplification kit using

the PVS prover's strategy mechanism. Called Manip, this package serves both as a useful

adjunct to the prover as well as a proof of concept tbr similar packages. Adapting the strate-

gies to other mathematical domains should yield benefits with only a modest development
effort.

1.1 Motivation

Consider the following lemma for reasoning about trigonometric approximations:

0 < < D IT, (a)l > 2 IT ,+l(a)l (1.1)

lIn PVS nomenclature, a rule is an atomic prover comnland while a strategy expands into one or more
atomic steps. A defined rule is defined as a strategy but invoked as an atomic step. For our purposes, we
regard the terms "tactic," "strategy" and "defined rule" as roughly synonymous.



(....(SKOSIMP*)

(REWRITE "sin_term_next")

(RECIP-MULT! (! i R (-> "abs") i))

(APPLY (REPEAT (REWRITE "abs_mult")))

(PERMUTE-MULT i R 3 R)

(0P-IDENT i L i*)

(CANCEL I)

(("I" (EXPAND "abs")

(ASSERT)

(PERMUTE-MULT i R 2 R)

(CROSS-MULT i)

(MULT-INEQ -2 -2)

(TYPEPRED "PI")

(EXPAND "PI_ub")

(MULT-INEQ -4 -4)

(ASSERT))

("2" (USE "sin_term_nonzero")

(GRIND NIL :REWRITES ("abs")))))

; strategy

; strategy

; strategy

; strategy

; strategy

; strategy

; strategy

; strategy

Figure 1.1: Proof steps for lemma (1.1) using manipulation strategies

where Ti(a) is the ith term in the power series expansion of the sine function:

oo

sin(a) = E(-1)i-la2i-l/(2i- 1)! . (1.2)
i--1

Using only built-in rules, the proof of (1.1) required 68 steps. A common technique in

such proofs is to use the case rule to force a case split on the equality of two subexpressions

in the sequent, such as:

(CASE "a!l * a!l * (2 * 2) = (2 * a!l) * (2 * a!l)")

Although not peculiar to PVS, this need to construct equivalent expressions and bring them

to the prover's attention is an awkward way to achieve simplification. It leads to a tedious

style of proof that tries the patience of most users.

In contrast, by using our techniques we were able to prove the lemma more naturally

in 18 steps, 8 of which are strategies from our package, as shown in Figure i.i. Unlike

the case-split technique, none of the steps contains excerpts from the sequent. This proof

represents one of the better examples of improvement from the use of our strategies. While

many proofs will experience a less dramatic reduction in complexity, the results have been

encouraging thus far.

1.2 Objectives

Mechanical theorem proving is often thought, for certain domains of application at least,

to require too much effort for the benefits obtained. Our overall objective is to mitigate

this situation for the domain of real arithmetic, at a minimum, so that theorem proving

might become more widely applied in engineering. In the process, we have pursued several

subordinate objectives.



Make the prover interface more approachable. It is desirable to enable those hav-

ing mathematical skill but not mechanical proving experience to become productive

quickly. Most (potential) users are not logicians or theoretical computer scientists.

They are unlikely to embrace a proof approach that entails fine tuning libraries of

rewrite rules, for instance.

Trade proof performance/eJ_ciency for predictability. Giving users interactive facilities

that mimic manual mathematical techniques allows them to make progress, despite

the prospect of producing larger than necessary proofs. We seek a human-machine

collaboration style that is less likely to be viewed as frustrating or futile.

Support an effective theorem-proving division of labor. It should be possible to capture

the knowledge of more experienced prover users in a form that helps less experienced

users prove theorems routinely. We emphasize tactic-based techniques as a way to

codify this knowledge.

Explore approaches that are customizable for different domains. After converging on a

useful package, its structure should be adaptable to other mathematical domains with

high reuse potential. We will develop some components that need not be adapted but

can simply be used as is.

The next chapter outlines key aspects of our approach for achieving these objectives.



Chapter 2

Enhanced Deduction Approach

User-defined proof strategies can be seen as a type of "deductive middleware." Systematic

strategy development for various domains could improve user productivity considerably.

This chapter proposes a general scheme for structuring and implementing strategies in

PVS along with supporting features. Chapter 3 sketches a particular set of strategies for

manipulating arithmetic expressions.

2.1 Overall Architecture

We propose an integration of several elements to arrive at a tactic-based deduction archi-
tecture for user enhancements to PVS.

.

.

.

.

Domain-specific proof strategies. Common reasoning domains, such as nonlinear real

arithmetic, provide natural targets for increasing automation. Extracting terms from

sequents using suitable access facilities is vital for implementing strategies that do

meaningful work.

Extended expression language. Inputs to existing prover rules are primarily formula

numbers and expressions in the PVS language. For greater effectiveness, we provide

users with a language for specifying subexpressions by location reference and pattern

matching.

Higher-order strategies with substitution. Strategies that apply other proof rules offer

the usual convenience of functional programming. Adding substitutions based on the

evaluation of extended expressions yields a more powerful way to construct and apply

rules dynamically.

User-interface utilities. To improve command line invocation of proof rules as well

as offer various proof maintenance functions, a set of Emacs-based interface enhance-
ments is included.

. Prelude extension libraries. The PVS prelude holds built-in core theories. Strategies

use prelude lemmas but often need additional facts. PVS's prelude extension feature

adds such theorems in a manner transparent to the user.



Thecomplementarynatureof theseelementsgivesthe integrateddeductionarchitecture
its effectiveness.Notethat onlyelements1and5 aredomainspecific;theothersarequite
generic.

Severalbenefitsaccruefromthisarchitecture.

• Userinteractionismorenatural,lesslaboriousandoccursat ahigherlevelofabstrac-
tion.

• Manymanipulationsapply lemmasfrom the preludeor its extensions.Strategies
enableprovingwithoutexplicitknowledgeof theselemmas.

• Thebrittlenessof proofsis reducedbyavoidingtheinclusionof expressionsfromthe
currentsequentin storedproofsteps.

• Provingbecomesmoreapproachablefor thosewith mathematicalsophisticationbut
little experienceusingmechanicalprovers.

Weenvisionsomefeaturesasbeingmoreusefulduringlaterstagesofproofdevelopment,
especiallywhenfinalizinga proofto makethepermanentversionmorerobust.Duringthe
earlystages,it iseasierto workdirectlywithactualexpressions.Oncetheoutlineofaproof
is firm, extendedexpressionfeaturescanbeintroducedto abstractawayexcessivedetail.

2.2 Design Considerations for Domain-Specific Strategies

User input to the PVS prover is via Lisp s-expressions. Internally the prover uses CLOS

(Common Lisp Object System) classes to represent expressions and other data. PVS pro-

vides macros for creating user-defined proof rules, which may include fragments of Lisp code

to compute new values for invoking other rules.

We postulate the following guidelines for developing a strategy package.

1. Introduce domain-relevant arguments. For arithmetic strategies, a user typically needs

to specify values such as the side of a relation (L, R), the sign of a term (+, -), and

term numbers. Variations on the conventions of existing prover input handle these

cases nicely.

2. Augment term access f_nctions. Besides the access functions provided by the prover,

additional ones may be needed to extract relevant values, e.g., the ith term of an

additive expression. A modest set of access functions suffices for working with common

language elements, such as arithmetic terms.

3. Use text-based expression construction. A proper implementation style would be to

use object constructors to create new expression values. This requires knowledge of

a large interface. Instead, it is adequate for most uses to exploit the objects' print

methods and construct the desired expressions in textual form, which can then be

supplied as arguments to other proof rules.

4. Use Lisp-based symbolic construction. To build final proof rules for invocation, the

standard Lisp techniques for s-expression construction, such as backquote expressions,

work well.



(DEFSTEP has-sign (term &optional (sign +) (try-just nil))

(LET ((term-expr (ee-obj-or-string (car (eval-ext-expr term))))

(relation (case sign

((+) '>) ((-) '<) ((0) '=)
((0+) '>=) ((0-) '<=) ((+-) '/=) (t '>)))

(case-step _(CASE ,(format nil "NA NA 0" term-expr relation)))

(step-list

(list _(SKIP) (try-justification _has-sign try-just))))

(SPREAD case-step step-list))

"Try claiming that a TERM has the designated SIGN (relationship to 0).

Symbols for SIGN are (+ - 0 0+ 0- +-), which have meanings positive,

negative, zero, nonnegative, nonpositive, and nonzero. Proof of the

justification step can be tried or deferred. Use TRY-JUST to supply

a step for the justification proof or T for the default rule (GRIND)."

"N%Claiming the selected term has the designated sign")

Figure 2.1: Sample strategy built using PVS defstep macro

5. Incorporate prelude extensions as needed. When prelude lemmas are inadequate to

support the desired deductions, a few judiciously crafted lemmas, custom designed for
specific strategies, can be added invisibly.

Applications of items 1 4 are demonstrated in the simple example of Figure 2.1. Most

strategies are rather more complicated than this example, often requiring the services of

additional Lisp functions and intermediate helper strategies.
In the step definition of Figure 2.1, a LET strategy is used to compute intermediate

Lisp objects. These end up being incorporated into the final step, an invocation of SPREAD,

which is used to manage proof steps for a case split. The argument term is allowed to

be an extended expression (see Chapter 4). The access function eval-ext-expr evalu-

ates it with respect to the current sequent and returns a structured object having several

components. Based on the sign argument, a PVS relation symbol is selected for use in
generating the CASE step. The backquote expression computes this step as a list object
such as (CASE "x!i > 0").

Two follow-up steps need to be specified for how to proceed after the case split. For
has-sign, the first branch does nothing but await further user direction, as indicated by the
step (SKIP). The other branch represents a proof attempt for the justification of the claim.
Given the user's instructions in argument try-just, the Lisp function try-justification
derives a suitable prover step, including backtracking in case the proof attempt fails to fully
discharge the branch. A typical generated step would look like the following.

(TRY (THEN (GRIND) (FAIL))

(SKIP)

(SKIP-MSG "Justification proof for HAS-SIGN using (GRIND)

is unfinished; undoing proof attempt."))

Once all these elements have been computed, the final outcome of has-sign is a proof
step written in terms of SPREAD, such as the following.

(SPREAD (CASE "x!l > 0")
((SKIP)



(TRY (THEN (GRIND) (FAIL))

(SKIP)

(SKIP-MSG "Justification proof for HAS-SIGN using (GRIND)

is unfinished; undoing proof attempt."))))

2.3 Strategy Inputs

Before describing the actual strategies, we sketch a few noteworthy features and capabilities

that apply throughout the package. Most are concerned with the formulation of arguments

supplied during strategy invocation.

In PVS nomenclature, a rule is an atomic prover command and a strategy is a com-

mand that expands into one or more atomic steps. A defined rule is a command

defined as a strategy but invoked as an atomic step. What we loosely call strategies

in this package are defined rules when invoked in the normal manner. The "$" forms

are the nonatomic strategy forms, which can be used to improve diagnostic infor-

marion by showing the expansion into core PVS rules. For instance, using cancels

instead of cancel spawns an expanded proof.

Many of the lemmas in prelude theory real_props are used by the arithmetic strate-

gies. Additional lemmas are needed to implement certain operations. The PVS

prelude-extension feature is the mechanism for integrating these new lemmas with-

out requiring any action on the user's part. Extension theories and their lemmas are

automatically visible within the prover.

A theory called extra_real_props extends the prelude with a set of real number

properties. These lemmas are applied as needed by the strategies, but also may be

applied directly by the user if desired. As strategies are added to the package, this

theory will be extended further to support new proof tactics.

As is true for the built-in prover commands, wherever a formula number is called for,

a formula label (symbol) may be supplied instead of a number. The special symbols

+, - and * are also available with their usual meanings as lists of formula numbers.

A special form is provided to construct the complement of a set of formula numbers.

Using the form (^ ni ... nk) wherever formula numbers are required indicates the

list of all formulas minus nl,..., rtk. Two additional forms, (-^ ... ) and (+^ ...),

yield the complements of antecedent and consequent formula lists.

Many of the arithmetic strategies accept term numbers as arguments, which are speci-

fied in a manner analogous to formula numbers. A term's position within its enclosing

expression determines its term number value. Rules for counting terms are based on

the arithmetic operators involved. Term numbers are expressed as integers, with term

1 designating the first (left-most) term. The special symbol * is also available to de-

note the list of all terms in an expression. Negative term numbers allow indexing from

right to left, that is, -1 selects term n, -2 selects term n - 1, etc. The special form

(^ nl ... nk) indicates all term numbers except rh,...,rtk.



• The prover has many commands that allow a user to specify PVS expressions as

arguments. Such expressions take the form of a literal string such as "2 * PI * a! l".

We have found it useful to extend this capability and allow richer forms of expressions.

Collectively these are called extended expression specifications (Chapter 4). For now

we note that all strategies in this package that call for arguments in the form of terms

or expressions may be supplied an extended expression as well as the familiar text

string form.

• Extended expressions also collect formula number data whenever possible. Pack-

age strategies accept extended expressions wherever fornmla numbers are required.

Numeric values are extracted from expression descriptors instead of text string com-

ponents.

• Several strategies are provided in two variants to accommodate different argument

types. One variant, which typically accepts arguments based on formula numbers,

suffices for simple but common uses. The other variant, which accepts arguments

based on a subset of extended expressions called location references (Section 4.2),

can support more complicated uses. The second variant is distinguished by the ' _'
character at the end of its name.

• Proof branching is generated by some strategies where justification cases arise. Justifi-

cation proofs may be attempted by supplying a non-nil value for the optional argument

try-just, which may be either a proof step or the value 1: to indicate the step (grind).

In either case, if the justification branch is not proved completely, the proof state for

that branch will be rolled back so the user can make a fresh attempt.

• When we speak of inequalities in the strategy descriptions, we refer to relations from

the set {<, _<, >, >}. The ¢ operator (/=) is not included because PVS normally elim-

inates such formulas by negating and moving them to the other side of the turnstile.

Any occurrences of/= may be removed by using low-level prover commands such as

(prop) and (ground).



Chapter 3

Algebraic Manipulation Strategies

This chapter describes a set of PVS prover strategies for manipulating arithmetic expressions

and performing other detailed proving steps. It includes strategies helpful for proving
formulas containing nonlinear arithmetic and similar expressions where PVS has limited

automation. It is important to emphasize that these strategies might not be suitable as

first-choice tools. Often it is preferable to try the more automatic prover features first, such

as decision procedures, automatic rewriting, and muscular rules like (grind), then consider
using these manipulations only if the other features fail. When proving with highly complex

expressions, however, the automatic prover commands might take too long to be useful. In

such cases, the more deliberate steps available from these strategies might be preferable.

For those manipulation strategies that require explicit terms as arguments, the terms

can be specified using either text strings in the normal manner, or the extended expressions

of Chapter 4, or the extensions to the Emacs PVS prover helps (TAB shortcuts) described

in Chapter 6. Tables 3.1 and 3.2 list the various manipulation strategies provided along

with their formal argument lists. Additional package details are available in the user's

manual [6].

3.1 Simple Arithmetic Strategies

This group of strategies performs common algebraic manipulations that normally are not

needed if your formulas fall within the domain of the linear arithmetic decision procedures

or the rewrite rules of prelude theory real_props. Auto-rewriting with real_props is often

powerful enough to prove many goals when combined with grind. Sometimes, however, it
leads to excessive or unbounded rewriting. In such cases, more deliberate steps need to be
taken.

Following are descriptions of the strategies and their signatures (formal argument lists).

Invoking a strategy from the prover command line requires surrounding it in parentheses

when typed, as is usually done. Invoking one using the TAB-z method of Chapter 6 will

cause you to be prompted for each argument using the formal argument names shown.

swap Ihs operator rhs aoptional ( iT_fiz? T) [Strategy]



Table 3.1: Summary of manipulation strategies.

Syntax Function

(swap lhs operator rhs _opt (infix? T))

(swap! expr-loc)

(group term1 operator term2 term3

_opt (side L) (infix? T))

(group! expr-loc _opt (side L))

(swap-group terml operator term2 term3

_opt (side L) (infix? T))

(swap-group! expr-loc _opt (side L))

(swap-rel _rest fnums)

(equate lhs rhs _opt (try-just nil))

(has-sign term _opt

(sign +) (try-just nil))

(mult-by fnums term _opt (sign +))

(div-by fnums term _opt (sign +))

(split-ineq fnum _opt (replace? nil))

(flip-ineq fnums _opt (hide? T))

(show-patens _opt (fnums *))

xoy_yox

L:x o(yoz) _ (xoy)o

L:_ o(yo_) _ yo(_o_)

Swap sides and reverse relations

...lhs... _ ...rhs...

Claims term has sign indicated

Multiply both sides by term

Divide both sides by term

Split _< (_>) into < (>) and = cases

Negate and move inequalities

Show fully parenthesized formulas

(move-terms fnum side

_opt (term-nums *))

(isolate fnum side term-num)

(isolate-replace fnum side term-num

_opt (targets *))

(cancel _opt (fnums *) (sign nil))

(cancel-terms _opt (fnums *) (end L)

(sign nil) (try-just nil))

(op-ident fnum _opt

(side L) (operation .1))

(op-ident! expr-loc _opt (operation .1))

(cross-muir _opt (fnums *))

(cross-add _opt (fnums *))

(factor fnums _opt (side *)

(term-nums *) (id? nil))

(factor! expr-loc _opt

(term-nums *) (id? nil))

(transform-both fnum transform

&opt (swap nil) (try-just nil))

Move additive terms to other side

Move all but one term

Isolate then replace with equation

Cancel terms from both sides

Cancel speculatively & defer proof

Apply operator identity to rewrite

expression

Multiply both sides by denom.

Add subtrahend to both sides

Extract common multiplicative factors

from additive terms given

Apply transform to both

sides of formula

10



Table3.2: Summaryof manipulationstrategies(continued).

Syntax Function

(permute-mult fnums _opt (side R)

(term-nums 2) (end L))

(permute-muir ! expr-loc _opt

(term-nums 2) (end L))

(name-muir name fnum side

_opt (term-nums *))

(name-muir! name expr-loc

_opt (term-nums *))

(recip-mult fnums side)

(recip-mult ! expr-loc)

(isolate-muir fnum _opt (side L)

(term-num 1) (sign +))

(mult-eq rel-fnum eq-fnum

_opt (sign +))

(mult-ineq fnuml fnum2

_opt (signs (+ +)))

(muir-cases fnum

_opt (abs? nil) (mult-op *i))

(mult-extract name fnum _opt

(side *) (term-nums *))

(mult-extract ! name expr-loc

_opt (term-nums *))

Rearrange factors in a product

Select factors, assign name to

their product, then replace

x, (1/6)

Select a factor and divide both

both sides to isolate factor

Multiply sides of relation by

sides of equality

Multiply sides of inequality by

sides of another inequality

Generate case analyses for products

Extract selected terms, name

replace them, then simplify

swap! expr-loc [Strategy]

The swap strategy tries exchanging terms in commutative expressions. It replaces each

applicable expression according to the scheme z o y _ y o z. All occurrences of x o y in the

sequent are replaced. Infix operators are normally expected, but prefix function application

is also accommodated by setting the infiz? argument to nil. In fact, any binary function

may be used provided its commutativity can be established.

In the ! variant, a subset of extended expressions called location references (Section 4.2)

may be used to supply the expr-loc argument. The referenced expression must be an ap-

plication of a commutative function or operator. The strategy determines whether it is an

infix or a prefix application. Multiple expression locations may result from a single expr-loc

argument. Only the first will be processed.

Usage: (swap "a! l" * "(x! i - 2)") commutes the two factors in the multiplicative

expressiona!l * (x!l - 2). If formula 3 is min(a! l, x!l) > 0, then (swap! (! 3 L))

rewrites the formula to rain(x! 1, a! 1) > 0.

11



groupterm1 operator term2 term3 _optional (side L) (infix? T) [Strategy]

group! expr-loc &optional (side L) [Strategy]

group tries rearranging terms in associative expressions. It replaces each applicable expres-

sion according to one of two schemes:

L: x o (yo z) _ (x oy) o_, R: (_ oy) o_ _ _ o (yo _)

The ! variant allows suitable expressions to be indicated by location references.

Usage: (group "a!l" * "x!l .... u!l" R)changes the expression (a!l * x!l) * u!l

so it associates to the right.

swap-group terml operator term2 term3 &optional (side L) (infix? T) [Strategy]

swap-group! expr-loc _optional (side L) [Strategy]

The previous two strategies are combined to replace according to the schemes:

L: _ o (yo z) _ y o (_ o_), R: (x oy) o_ _ (_ o_) oy

This might be used to "lift" a middle tern] out where it can be more accessible to ]emmas

and rewrite rules. The ! variant allows suitable expressions to be indicated by location
references.

Usage: (swap-group "a!l" * "(x!l - 2) .... sq(u!l)") moves the middle tern] to
the left.

swap-rel _rest ]hunks [Strategy]

Relational formulas may have their two sides swapped using this strategy, with the direction

of any inequality operators being reversed. Normally this type of transformation is unnec-

essary. It might be useful in writing higher level strategies, however, where it can simplify

matters to assume that the relation is always less-than, for example. In other situations it

may be used to move preferred terms left so that rewrites are tried first on the chosen side.

equate lhs rhs _optional (try-just nil) [Strategy]

With equate a user can claim an equality between expressions and have rhs replace lhs.

If the optional argument try-just is non-nil, it will be interpreted as a prover command

to invoke for proving the justification, i.e., for proving lhs = rhs. As a special case, the

value "t" may be given to apply (grind) in the justification step. Although the effect of

equate can be achieved using the prover rule case-replace, equate obviates the explicit

construction of an equality expression and offers more convenience when used with the

Emacs TAB-z feature or the extended expression feature.

Usage: (equate "(x!l - 2) .... a!l" (assert)) replaces (x!l - 2) by a!l, then ap-

plies (assert) to try to prove the equality holds.

has-sign term aoptional (sign +) (try-just nil) [Strategy]

Often it is desirable to claim that a tern] has a certain sign or other relationship to zero.
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has-signallowsthe userto claimthat term has a designated property, where sign can be

one of six symbols with meaning as follows:

+ - 0 0+ 0- +-

x>0 x<0 x=0 x_>0 x_<0 x#0

Proof of the justification step can be tried or deferred as indicated by try-just.

Usage: (has-sign "sin(phi! i + 2*PI) - sin(phi! i)" 0 T) claims an expression

has value zero and triesto prove itusing (grind).

mult-by fnums term g_optional (sign +) [Strategy]

Both sides of a relational formula may be multiplied by a common factor using mult-by.

For inequality relations, when the factor is known to be positive or negative, use + or - as

the sign argument. Otherwise, use *, which introduces a conditional expression to handle

the two cases in the same manner as cross-muir (see page 16). No sign argument is needed

for equalities.

The built-in prover command both-sides offers a way to achieve similar effects. Strat-

egy mult-by, however, provides the means to specify a term's polarity and perform a

case split accordingly, which usually proves the justification branch automatically. With

both-sides, it is often necessary to prove the justification explicitly. Moreover, when

multiplying an inequality by a negative term, it will not formulate the desired proposition.

Usage: (mult-by 2 "y! 1" -) multiplies both sides of formula 2 by y! 1, which is de-

clared to be negative, causing the two sides of the formula to be swapped.

div-by fnums term _optional (sign +) [Strategy]

Both sides of a relational formula may be divided by a common divisor using div-by. For

inequality relations, when the divisor is known to be positive or negative, use + or - as the

sign argument. Otherwise, use *, which introduces a conditional expression to handle the

two cases in the same manner as mult-by. No sign argument is needed for equalities.

Usage: (div-by 2 "sq(y! 1)") divides both sides of formula 2 by sq(y! 1), which is

assumed to be positive.

split-ineq )hum &optional (replace f nil) [Strategy]

Given that fnum is a nonstrict, antecedent inequality (<= or >=), split-ineq forces the

sequent to split into two cases, e.g., an equal-to and a less-than case. It also works iffnum

is a strict consequent inequality. Simplification using (assert) is applied after splitting.

The equality may be optionally used for replacement by supplying the direction LR or RL

for the replace ? argument.

Usage: If formula 2 is x ! i > y ! i, then (split-ineq 2 RL) causes a case split on the

expression "x ! i = y ! 1" and performs the replacement of x ! 1 for y ! i in the equality branch.

flip-ineq)hums _optional (hide? T) [Strategy]

One property of the prover's sequent representation is that a sequent having antecedent
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(consequent)formulaP is equivalent to one having _P as a consequent (antecedent) for-

mula. The prover automatically makes use of this equivalence, even though _P does not

explicitly appear in the sequent. In the case of an inequality relation, its negation is itself

another inequality. Occasionally a user might prefer one inequality form and location over

another. Adjustments along these lines may be accomplished using flip-ineq.

For fnurns that are inequality relations, flip-ineq negates the inequalities and moves

the negated formulas by exchanging between antecedents and consequents. Conjunctions

and disjunctions of inequalities are also accepted, causing each conjunct or disjunct to be

negated in an application of De Morgan's law. If hide? is set to nil, the original formulas

are left intact; otherwise, they are hidden.

Usage: If formula 2 is "x!l > y!l", then (fXip-ineq 2) causes "x!i <= y!l" to be

added as formula-1. If formula-3 is the disjunction "x! i > 9 OR y! 1 < 6 01% z! i >= 3",

then (fXip-ineq -3 niX) adds "x!i <= 9 AND y!l >= 6 AND z!l < 3" as a new for-

mula 1 and retains the original formula -3.

show-parens g_optional (fnurns *) [Strategy]

Occasionally it is useful to see how terms are associated in a complex expression. The full

parenthesization of a formula's term structure may be displayed using show-patens. Its

behavior is incomplete; it does not handle all features of PVS syntax, only the common

ones such as infix and prefix function application. PVS 3.0 is supposed to include a way to

display parenthesization, so this strategy is only a stopgap measure until 3.0 arrives.

3.2 Intermediate Arithmetic Strategies

This second group of arithmetic strategies tries to carry out common manipulations without

specifying the actual terms from the sequent. This is generally desirable to prevent detailed

expressions from being saved with the proof step. Avoiding such cases can lead to more

robust proofs that require less updating when lemmas or theories are changed.

move-terms ]hum side _optional (term-hums *) [Strategy]

With move-terms a user can move a set of additive terms numbered term-hums in relational

formula ]hum from side (L or R) to the other side, adding or subtracting individual terms

from both sides as needed, term-nnms can be specified in a manner similar to the way

formula numbers are presented to the prover. Either a list or a single number may be

provided, as well as the symbol "*" to denote all terms on the chosen side. Note that

parentheses and associative grouping are ignored for purposes of assigning term numbers,

e.g., term2in"x + (y + z)"isy, noty + z.

Usage: (move-terms 3 L (2 4)) moves terms 2 and 4 from the left to the right side
of formula 3.

isolate ]hum side term-hUm [Strategy]

A special case of move-terms is offered by isolate, which moves all additive terms except
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that numberedterm-hum from side (L or R) to the other side. If fnum is an equality,

the effect is the same as solving for an additive term. Isolate is equivalent to the form

(move-terms fnum side (^ term-num)) (refer to term-number discussion on page 7).

Usage: (isolate 1 R 3) moves all right-side terms except number 3 to the left.

isolate-replace ]hum side term-num aoptional (targets *) [Strategy]

A further special case is when isolate is applied to an antecedent equality. The resulting

equality may be used to replace the isolated term in targets, after which the equality is

hidden.

Usage: (isolate-replace 1 L 3 +) solves for left-side term 3 and uses the resulting

equality for replacement in the consequent formulas.

cancel &optional (fnu_7ts *) (sign nil) [Strategy]

Cancellation is available through the automatic rewrites of prelude theory real props. Of-

ten this rewriting does more than desired, however, and at other times misses opportunities

for cancellation. For these reasons, we provide a more focused operation in cancel. When

the top-level operator on both sides of a relation in ]hums is the same operator drawn from

the set {+, -, *,/}, cancel tries to eliminate common terms using a small set of rewrite

rules and possible case splitting. No other simplification is attempted.

Cancellation is possible when/hum has one of two forms:

xoyRxoz, yoxRzox

The types allowed for x, y, z depend on the relation and arithmetic operator involved. In the

default case, when sign is NIL, x is assumed to be (non)positive or (non)negative as needed

for the appropriate rewrite rules to apply. Otherwise, an explicit sign can be supplied to

force a case split so the rules will apply. If sign is + or -, x is claimed to be strictly positive

or negative. If sign is 0+ or 0-, x is claimed to be nonnegative or nonpositive. If sign is *,

x is assumed to be an arbitrary real and a three-way case split is used. No sign argument

is needed for equality relations.

At times, unproved cases requiring user attention are split off. Such cases can result

when the canceled term does not match the sign argument or when cancellation is invalid for

other reasons. A further caveat is that cancel only works with top-level operations. This

means that (x * y) * z = (x * a) * b will not yield to cancel, nor will it be simplified

through real_props automatic rewriting. In such cases, use the cancel-terms strategy

(immediately following) or do some rearranging of the formula before attempting cancel.

Usage: (cancel 3 0-) tries to cancel from both sides of formula 3 after first splitting

on the assumption that the common term is nonpositive.

cancel-terms _optional (fnums *) (end L) (sign nil) (try-just nil) [Strategy]

Often it is desirable to cancel nonidentical terms speculatively. This capability is offered

through cancel-terms, which splits into cases on the assumption that both left-most or

right-most terms in a relational formula are equal. The user can specify at which end (L

15



or R) of a chainof similarinfixapplicationsto lookfor the allegedlycommonterm.Asso-
ciativegroupingsareignoredwhenidentifyingtheendterm.The'-' operatorisconsidered
equivalentto '+' for thispurpose.Ontheotherhand,onlytheouter-mostapplicationin a
chainof '/'-separated terms is recognized.

As an example, suppose that formula 2 is x * y * z > a * b * c. (cancel-terms 2)

will first introduce a case split on the condition x = a. Then it will use this equality to

reduce formula 2 to y * z > b * c. On the other proof branch, the user will have to

establish x = a.

For inequalities, the sign argument can be used to indicate term polarity as in cancel. In

addition, an automatic proof attempt of the terms' equality can be triggered using try-just.

Usage: (cancel-terms 3 L + T) tries to cancel the left-most term from both sides

of formula 3 after first splitting on the assumption that the positive terms are equal. An

automatic attempt to prove their equality using (grind) is performed.

op-ident fnum _optional (side L) (operation *1) [Strategy]

op-ident! expr-loc _optional (operation *1) [Strategy]

The cancellation strategies do not handle any "one-sided" cases, e.g., a relation of the form

x R x * y. Rewriting with real_props likewise offers no benefit. We provide op-ident

to perform the setup for such cancellations and similar operations. The operator identity

given by operation is used to rewrite the expression found on side of formula Chum.

In the ! variant, a subset of extended expressions called location references is provided

for supplying the expr-loc argument (Section 4.2). Multiple expression locations may result

from a single expr-loc argument. Each will be processed separately.

Currently, the following operations are available using these designated symbols:

z+ +z -z 1. *1 /1

0+x x+0 x-0 l*x x*l x/1

Note that symbols using 'z' rather than '0' are used because +0 and -0 are treated by Lisp

as the number 0 rather than as symbols.

Usage: (op-ident -2 L 1.) rewrites formula -2 from b! 1 < a! 1 * b! i to the equiv-

alent formula i * b!i < a!i * b!l. The form (op-ident! (! -2 L) 1.) achieves the

same result, although both occurrences of b ! i will be replaced.

cross-muir _optional (fnums *) [Strategy ]

When the various rewrite rules fail to produce the desired effect in eliminating divisions,

cross-muir may be used to explicitly perform "cross multiplication" on one or more re-

lational formulas. For example, a/b < c/d will be transformed to ad < cb. The strategy

determines which lemmas to apply based on the relational operator and whether negative

divisors are involved. Cross multiplication is applied reeursively until all outermost division

operators are gone.

cross-muir also tries to do something reasonable in case the denominators are not

known to be strictly positive or negative. Lemmas provided in theory extra_real_props,
such as
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div_mult_pos_neg_itl: LEMMA

z/nOy < x IFF IF nOy > 0 THEN z < x * nOy ELSE x * nOy < z ENDIF

are used to carry out cross multiplication using conditional expressions. If the denominators

are of type posreal or negreal, however, these lemmas are not required.

cross-add _optional (]hums *) [Strategy]

Performing "cross addition" is handled in most cases by move-terms. There are times,

however, when it is desirable to find subtractions automatically and add the subtrahends to

both sides. This type of cross addition is performed by cross-add, applying the procedure

recursively until all outermost subtraction operators on either side of the relational formulas

are gone.

factor fnums _optional (side *) (term-nums *) (id? nil) [Strategy]

factor ! expr-loc _optional (term-hums *) (id? nil) [Strategy]

If the expression on side of each formula in ]hums has multiple additive terms, factor

may be used to extract common multiplicative factors and rearrange the expression. The

additive terms indicated by term-nums are regarded as bags of factors to be intersected for

common factors. Terms not found in term-hums are excluded from this process. If side

is *, both sides will be factored separately using term-nums, which might not be useful

unless term-hums is also *. The default case of "(factor <fnums>)" tries to factor both

sides (separately) using all the terms of each side. Currently, there is no attempt to handle

divisions; only multiplications within additive terms are recognized by the factoring process.

In the ! variant, the expr-loc argument supplies a location reference to identify the target

expression(s). Multiple expression locations may result from a single expr-loc argument.

Each will be processed separately.

If the optional argument id? is set to T, then the additive terms are wrapped in an

application of the identify function id after factoring. This prevents later distribution of

the multiplication operators by subsequent prover commands, which might undo the work

of factor before the factored expressions can be used.

As an example, suppose formula 4 has the form

f(x) = 2 * a * b + c * d - 2 * b

and the command "(factor 4 R (1 3) T)" is issued. Then the strategy will rearrange
formula 4 to:

f(x) = 2 * b * id(a - i) + c * d

For a more complicated example, (factor! (! 4 R (->* "cos") i)) factors the ar-

gument of each instance of the cos function on the right side of formula 4.

transform-both ]hum transform _optional (swap nil) (try-just nil) [Strategy]

A generalized "both sides" command is offered by transform-both, although it is unable

to select suitable lemmas and therefore leaves that work for the user. The idea is to apply
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anarbitrarytransformto bothsidesofa relationaltbrmula,wherethetransformiswritten
asa parameterizedPVSexpression.Thismechanismis describedin full in Section5.1;a
specialcaseis usedhere.Thestrategyitselfmaybeviewedasaspecialcaseofthestrategy
invocationsdescribedin Section5.2.

Thetransformexpressionusesthestring"7,1"to representthe left-andright-handside
expressionsin the relation.Hencethe transformcanbe regardedasa macroor template
expressionwith "TA"servingasanimplicit macroor templateparameter.As anexample,
supposeformula-3 is "a/b = c/d." Invokingthecommand

(transform-both-3 "2 * sqrt(_l)")

takes the square root of both sides of formula -3 then multiplies by 2. A case split is
introduced based on the formula

2 * sqrt(a/b) = 2 * sqrt(c/d)

Proof of the justification step can be tried or deferred until later. The flag swap is used to

indicate when the sides should be swapped (e.g., when multiplying by a negative number).

Usage: (transform-both 3 "-PI * °/A" T (ground)) multiplies both sides by-7c,

swapping the two sides in the process, and tries to prove the transformation is valid using

ground.

3.3 Strategies for Manipulating Products

To enhance reasoning capabilities for nonlinear arithmetic, we provide several strategies

for manipulating products or generating new products. This supports an overall approach

of first converting divisions into multiplications where necessary, then using a broad array

of tools for reasoning about multiplication. Many of these manipulations apply lemmas

already present in the prelude. Use of the strategies allows proof construction without

detailed knowledge of these lemmas or the need to remember their names.

permute-mult fnums _optional (side R) (term-hums 2) (end L) [Strategy]

permute-mult ! expr-loc _optional (term-nums 2) (end L) [Strategy]

When there are three or more multiplicative terms in a product, it is sometimes difficult to

make progress because the terms appear in an undesirable order or the association of terms

gets in the way of applying lemmas. This can impede the application of various simplifi-

cations such as cancellation. To remedy the situation, a user can apply permute-mult to

reorder terms in a product.

To perform this task, as well as several others in this group of strategies, the user needs

to ret_r to individual terms in a product. This is done using the same method as earlier

strategies. After identifying the expression to draw terms from, the argument term-nums

is used to supply a single term number or list of term numbers. Terms in a product are

numbered left-to-right starting with number 1. Parentheses are ignored for the purpose of

numbering terms.
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For end= L, the actionof permute-muiris asfollows.Let theexpressionon side of a

formula in fnums be a product of terms, P = tz * ... * t_. Identify a list of indices I (term-

hums) drawn from {1,..., n}. Construct the product ti_ * • .. * ti_ where i_. E [. Construct

the product tjl * ... * tj,,_ where Jk E {1,..., n} - [. Then rewrite the original product P

to the new product til* ... * ti_ * tjl * ... * tj,,_. Thus the new product is a permutation of

the original set of factors with the selected terms brought to the left in the order requested.

For end = R, the selected terms are placed on the right.

In the ! variant, the expr-loc argument supplies a location reference to identify the target

expression(s). Multiple expression locations may result from a single expr-loc argument.

Each will be processed separately.

Usage: (permute-muir 3 L (4 2)) rearranges the product on the left side of formula

3 to be t4 * t2 * tl * t3, with the default association rules making it internally repre-

sentedas ((t4 * t2) * tl) * t3.

name-mult name ]hum side _optional ( term-nums *) [Strategy]

name-mult ! name expr-loc _optional ( term-nums *) [Strategy]

With name-muir a user can take the action of permute-muir one step further. After select-

ing and extracting a product P of subterms to place on the left of the new product, P is

assigned a name and a name-replace operation is carried out so that P = name is added

as a new antecedent formula. In the ! variant, if multiple locations result from expr-loc,

only the first one is processed.

Usage: (name-muir "prodl" 3 L (4 2)) rearranges the product on the left side of for-

mula 3 to be PROD1 * tl * 1;3 and adds the equality t4 * t2 = PROD1 to the antecedents.

recip-mult ]hums side [Strategy]

recip-mult ! expr-loc [Strategy]

With recip-mult a user can convert an expression from a division to a multiplication

by the reciprocal of the divisor. This presents an alternative way to deal with divisions

from that offered by the cross-muir strategy. Reciprocals might be preferable when it is

necessary to maintain a fornmla in the form of an equation such as x = y * (i/z) because

substitution for x is anticipated shortly. Reciprocals also help when applying lemmas that

assume expressions are in product form. In the ! variant, if multiple locations result from

expr-loc, each is processed separately.

Usage: (recip-mult 2 R) turns the (top-level) division on the right side of formula 2

into reciprocal multiplication.

isolate-mult fnum _optional (side L) (term-num 1) (sign +) [Strategy]

isolate-muir is used to migrate factors from a product to a division on the other side of

a relation. Generally this is undesirable, but there are circumstances where solving for a

term found within a product is necessary to enable later replacement actions. Given that

formula fnum has the form tl *... * tn 1_ e (side is L), selecting term i for isolation produces

the new formula ti R e/(tl * ... * ti-1 * ti+l * ... * t_). For inequalities, the sign argument

may be used to indicate when this divisor is a negative quantity. A case split is introduced
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to establishthat thedivisorispositiveornegativeasclaimed.
Usage: (isolate-muir 4 L 3 +) divides both sides by all of the left-side terms of

formula 4 except number 3, which collectively forms a positive product.

mult-eq rd-fnum eq-fnum _optional (sign +) [Strategy]

Sometimes it is helpful to generate a new relation based on the products of terms from

two existing formulas. Given a relational formula a R b and an antecedent equality x = y,

mult-eq forms a new antecedent or consequent relating their products, a * x R b * y. If R

is an inequality, the sign argument can be set to one of the symbols in {+, -, 0+, 0-} to

indicate the polarity of x and y (positive, negative, nonnegative, nonpositive). A sign of *

is not supported (yet).

Usage: (mult-eq -3 -2 -) multiplies the sides of formula -3 by the sides of equality

-2, which are assumed to be negative. (mult-eq -2 -2 -) would square both sides of -2.

mult-ineq ]hum1/hum2 &optional (signs (+ +)) [Strategy]

In certain cases, the terms of two inequalities can be used to generate a new inequality.

Given two relational formulas fnuml and fnum2 having the forms a R1 b and x R2 y,

mult-ineq forms a new antecedent relating their products, a * x R3 b * y. If R2 is an

inequality having the opposite direction as R1, mult-ineq proceeds as if it had been y R_ x

instead, where R_ is the reverse of R2. The choice of R3 is inferred automatically based

on R1, R2, and the declared signs of the terms. R3 is chosen to be a strict inequality if

either R1 or R2 is. If either formula appears as a consequent, its relation is negated before

carrying out the multiplication.

Not all combinations of term polarities can produce useful results with mult-ineq.

Therefore, the terms of each formula are required to have the same sign, designated by the

symbols + and -. Inequalities on terms of dii_rent polarities are not supported, largely

because the truth of whether an inequality holds on the products depends on the relative

magnitudes of the products rather than just the polarity of their factors. The formulas are

allowed to have different signs, however, relative to each other. For example, fnuml could

be an inequality on positive terms while/hum2 is on negative terms. The signs argument

must be a list of two signs denoting the polarities of fnuml terms and/hum2 terms.

Usage: (mult-ineq -3 -2 (- +)) multiplies the sides of inequality formula -3 by the

sides of inequality -2, which are assumed to relate negative and positive values, respectively.

(mult-ineq -2 -2) would square both sides of -2.

mult-cases ]hum &optional (absf nil) (rrtult-op *1) [Strategy]

Case analyses for relational formulas containing products are generated by muir-cases.

Two types of relations are accommodated. If ]hum has the form x * y R 0 (or 0 R x * y),

muir-cases will rewrite fnnrrt to two cases relating x and y to 0, as appropriate. Some

flattening and simplification will be attempted after rewriting.

If/hum is a consequent inequality of the form a * b R c * d, muir-cases will generate

sufficient conditions to establish the inequality by considering relations between a and c,

and between b and d. Likewise, for an antecedent inequality of this form, muir-cases will
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generatenecessaryconditionsfor/num. Thelemmasusedbymuir-casescontaininstances
of theabsfunction,whicharenormallyexpanded.Tosuppressthisexpansion,setabs? to

T and the applications of abs will be retained.

Some branching of the sequent is likely with this second relational form. Moreover,

when the terms are unconstrained real values, the conditions generated are complex. Much

better simplification occurs if the terms are known to be (non)positive or (non)negative.

All combinations of term polarities should produce meaningful results.

IF/hum is an inequality of the form a * b R c or a R c * d, ]hum is first transformed into

the form a * b R c* d by multiplying c or a by 1. mult-op may be set to *l (1,) to multiply

on the right (left). Case analysis then proceeds as in the general case described above.

Usage: (mult-cases 2) generates conditions for the products found in formula 2.

muir-extract aoptional (side *) (ter. -nu. s *) [Strategy]
mu]_t-extract ! name expr-loc _optiona]_ (term-hums *) [Strategy]

Operating at a somewhat higher level, mult-extract performs a series of steps to simplify

sums of products and put them into a form amenable to further manipulation. First, it

extracts the additive terms specified by term-hums from the expression found on side of

formula ]'num. Each additive term is treated as a product of factors, some of which may

contain divisions. Each product term thus selected is extracted using name-replace to

form a new antecedent equality. A name for each product is constructed by appending an

index to the argument name. After each equality is established, the divisors are multiplied

out to remove top-level division operations (similar to the action of cross-mult). Then

common factors on both sides of each equality are identified and canceled. In the ! variant,

if multiple locations result from expr-loc, only the first one is processed.

Usage: (mu]_t-extract 2 L (1 3)) applies the prescribed sequence of manipulations
to additive terms 1 and 3 on the left side of formula 2.
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Chapter 4

Extended Expression Notation

To enhance the effectiveness of prover strategies, we provide a means for specifying extended

expressions as strategy arguments. Two major types of extensions are included: location

references and textual pattern matching. Location references allow a user to indicate a

precise subexpression within a formula by giving a path of indices to follow when descending

through the formula's expression tree. Pattern matching allows strings to be found and

extracted using a specialized pattern language that is based on, but much less elaborate

than, regular expressions. Together the extensions offer much more flexibility for entering

PVS expressions than simple text strings.

4.1 General Syntax

Extended expressions are specified using a combination of string literals and Lisp-oriented

notation. Evaluation of extended expressions takes place during strategy execution, yielding

sets of values that are used to form arguments to built-in prover commands. The results

of this evaluation usually denote expressions in the PVS language but need not do so.

Expression strings can be arbitrary text that will be combined later with other text to form

more meaningful strings. The substitution mechanism presented in Section 5.1 enables this

type of recombination.

An extended expression is recursively defined to have one of the following forms:

• A literal text string (characters in double quotes).

• An integer denoting a formula number. The string value of such an expression is the

textual representation of the PVS formula.

• A symbol denoting either a formula label or one of the special symbols +, -, *, with

their usual meanings as sets of formulas.

• A location reference having the form (! <ext-expr> il ... in), where il,...,in
are index values.

• A pattern match having the form (? <ext-expr> pl ... pn), where Pl,... ,Pn are

pattern strings.
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• A list (el ... en), where el,...,e_ are extended expression specifications. After

evaluation, the lists generated by el, • • •, en will be concatenated into a single list.

Note that numbers when used as extended expressions do not denote numbers in the PVS

language as they usually do at the prover interface. Numbers denote formulas; string
literals such as "4" must be used to indicate PVS numbers. Similarly, formula labels must

be entered as symbols rather than strings, e.g., sq_fmla rather than "sq_fmla". Also note

that the location reference and pattern match forms take another extended expression as

their first "argument." In practice, this is almost always a number or symbol. Nesting of

extended expressions is possible, although some combinations do not yield useful results.

Evaluation of an extended expression can result in zero or more separate strings or
objects being generated. Internally, evaluation produces a list of descriptors, each of which

contains a text string, the number of the formula of origination, and the Common Lisp

CLOS object that represents a PVS expression. Only the string component exists in all

cases. For example, pattern matches generally do not produce a CLOS object because

matches return arbitrary strings that need not correspond to PVS expressions.

For the strategies of Section 5.2, multiple expression specifications may be supplied as

arguments. What happens in such cases is that each specification gives rise to an arbitrary

number of descriptors. All the descriptor lists are then concatenated to build a single

descriptor list before substitutions are performed.

4.2 Location References

A location reference has the form (! <ext-expr> il ... in), where <ext-expr> is the

base expression or starting point, which must describe the location of a valid PVS expression.

The index values {ij} are used to descend the parse tree to arrive at a subexpression,
which becomes the final value of the overall reference. Actually, the final value is a list of

expressions, which allows for wild-card indices to traverse multiple paths through the tree.

Moreover, the index values may include various other forms and indicators used to control

path generation.
Location references are so named because they specify sites within the current sequent.

This property allows them to be used as arguments for certain strategies where a mere text

string is inadequate. For example, the factor! strategy can factor an expression in place

using this feature even if the target terms appear in the argument to a function. Thus,

location references can be regarded as somewhat analogous to array or structure references

in a procedural programming language.

An example of a simple location reference is (! -3 2), which evaluates to the right-

hand side (argument 2) of formula -3. If this formula is "x !1 = cos (a! 1)," then the string

form of the location reference is "cos (a! 1)." Adding index values reaches deeper into the

formula, e.g., (! -3 2 1) evaluates to "a! 1." Breadth can be achieved as well as depth;

( ! -3 *) evaluates to a list having one element for each side of the formula.

Strictly speaking, formula numbers and symbols are also location references, albeit in

shorthand form. In fact, the extended expression 4 is equivalent to ( ! 4). This establishes

the base case for the definition. Indices determine which paths will emanate from this base

expression.
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Index values and directives {ij} may assume one of the following forms:

• An integer i in the range 1,..., k, where k is the arity of the operator or function at

the current point in the expression tree. Paths follow the ith branch or argument. If i

is the last index (i_), the value returned for the location reference is the ith argument

of the current subexpression. Negative integers allow indexing from right to left, that

is, -1 selects argument k, -2 selects k - 1, etc.

• One of the symbols L or R, which denote the index values 1 and 2, leading paths

through the first or second branch accordingly.

• The index value 0, which returns the function symbol of the current expression, pro-

vided it is a function application. In a higher-order function application, the function

itself can be an expression, as in f(x)(y). Indices after the 0 can be supplied to retrieve

components of the function expression.

• The wild-card symbol *, which indicates that this path should be replicated n times,

one for each argument expression. The values returned are those generated by all n

of the paths.

• A list (j 1 ... jm) of integers indicating which argument paths should be included

for replication, i.e., a subset of the * case.

• A complement form (^ jl ... jm) that indicates all argument paths should be fol-

lowed except those in {j_.}.

• One of the deep wild-card symbols {-*, *-, **}, which indicates that this path should

be replicated as many times as needed to visit all nodes in the current subtree. The

values returned are the leaf objects (terminal nodes) for -*, the nonterminal nodes

for *-, and all nodes (subexpressions) for **.

• A text string serving as a guard to enable continuation of the current path(s). If

the function or operator symbol of the current subexpression is equal to the string,

path elaboration continues. Otherwise, the path is terminated and an empty list is

returned. Guards act to select desired paths from multiple candidates.

• A list (sl ... sk) of strings that serves as a guard in the form of patterns to be
matched in the manner of Section 4.3.

• A form (-> gi ... gk) that serves as a go-to operator to specify a systematic search

down and across the subtree until the first path is found having intermediate points

satisfying all the guards {gi} in sequence. The selected path generates the final value.

Each guard gi may be either a string or list of strings, with meanings as described

above.

• A form (->* gi ... gk) that behaves the same as (-> ...) except that all eligible

paths are found and returned as values.
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Formula -1 Formula -2 Formula 1
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r!l 1

= <

/\ /\
r ! 1 + sqrt sqrt

/\ 1 1
* 1 r! 1 sq

/\ I
2 x!l /

/\
x!l 4

Figure 4.1: Expression trees for formulas in Table 4.1.

We note a few fine points about these features. Infix and prefix function applications are

considered equivalent for indexing purposes; in both "x! i * y! i" and "atan(x! i, y! 1),"

x!i is argument 1 and y!i is argument 2. Out of range index values cause termination

of a path and an empty return value. The same is true of index lists that "fall off the

end" of a path by supplying too many indices. The deep wild-cards {-*,*-, **} may be

followed by other indicators, which use the various subexpressions as their starting points.

During a tree search, backtracking is performed as needed so that the go-to operators -> and

->* find any (upper level) paths that meet the indexing specification. If there are nested

applications of a function, for example, only the upper-most subexpression will be returned.

Also note that repeated function names in a go-to form, such as (! 2 (->* "sq .... sq")),

will not descend to the lower expression(s). The second occurrence of the guard "sq" will

be immediately matched by the expression reached by the first occurrence. To reach the

lower "sq" requires a specification such as (! 2 (->* "sq") i (->* "sq")).

A few special indexing cases exist for arithmetic expressions. They result in some

apparent "flattening" of the parse tree during traversal. The conventions make indexing

more convenient for arithmetic terms and correspond more closely to our usual algebraic

intuition for numbering terms. The conventions are as follows.

• Additive terms, i.e., terms that are arguments of a + or - operator, are counted left to
right irrespective of the associative groupings that may be in effect. They are treated

as if they were all arguments of a single addition/subtraction operator of arbitrary

arity.

• Multiplicative terms, i.e., terms that are arguments of a * operator, are counted left to

right irrespective of the associative groupings that may be in effect. They are treated

as if they were all arguments of a single multiplication operator of arbitrary arity.

Parentheses for these associative operators are effectively ignored during the flattening

process, e.g., for the three expressions "x * (y * z)', "x * y * z', and "(x * y) * z',

term 2 is y in each case.

We illustrate the formulation of location references using the notation just described.

Table 4.1 gives the result of evaluating location references with respect to the formulas

shown beneath the table. Figure 4.1 depicts the expression trees for these formulas.
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Table 4.1: Examples of location reference expressions.

Location reference Expression strings

(! -2)

(! -2 T.)

(! -2 R)

(! -2 R 1)

(! -2 R 2)

(! -2 R 1 2)

(! -1 T. 2 1)

(_ 1R1)
(_ 1Rll)
(! 1R1 1 2)

(! -2 *)

(! -i L 2 *)

(! -i L * i)

(! -i L * *)

(! -i L (^ i))

(! -2 R -*)

(! 1 R -,)

(! -2 R **)

(! 1 R 1 **)

(! ...... )

(! -2 * "+")

(! 1 (-> "sqrt"))

(! 1 (->* "sqrt"))

(! 1 (-> "sq"))

(! 1 (-> "sq") 1)

(! -i (-> "+") *)

(! -i (->* "+ .... *") *)

(! 1.-0)

r!l = 2 * x!l + 1

r!l

2 * x!l + 1

2 * x!l

1

x!l

y]l

sq(x! 1 / 4)

x!i/4

4

r!l, 2 * x!l + 1

y!l, r!l

x!l, y!l

x!l, r!l,y!l, r!l

y!l * r!l

2, x !i, 1

x!l, 4

2 * x!l + i, 2 * x!l, 2, x!l, 1

sq(x!l / 4),x!l / 4, x!1,4
r!l = 2 * x!l + 1

2 * x!l + 1

sqrt (r!i)

sqrt (r!i), sqrt (sq(x! 1 / 4))

sq(x! 1 / 4)

x!i/4

x!l * r!l, y!l * r!l

x!l, r!l,y!l, r!l

<, sqr% sqrt, sq, /

where the formulas are as follows:

{-i} x!l * r!l + y!l * r!l > r!l - 1

[-2] r!l = 2 * x!l + 1

I

[i] sqrt(r!l) < sqrt(sq(x!l / 4))
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Combinations of indexing directives offer useful ways to find multiple expressions. For

instance, ( ! * R "+") finds all right-hand sides having the form of an addition. Similarly,

(! + (->* "cos") 1) finds all arguments of the cos function in the consequent formulas.

Another example is ( ! ...... L), which finds the left-hand sides of antecedent equalities.

4.3 Pattern Matching

Recall that a pattern match is specified using the form (? <ext-expr> pl ... pn). Each

pattern pj is expressed as a text string using a specialized pattern language. Unlike location
references, pattern matches usually produce only a text string and lack a corresponding

CLOS object for a PVS expression. The patterns Pl,... ,Pn are applied in order to the

textual representation of each member of the base expression list. In each case, matching

stops after the first successful match among the {pj} is obtained. All resulting output
strings are collected and concatenated into a single list of output strings.

4.3.1 Pattern Language

The pattern language was designed to meet the anticipated needs of prover users in describ-

ing PVS expressions. Pattern matching features are implemented in terms of the built-in

regular expression package bundled with PVS's Allegro Common Lisp environment. This

module provides only basic regular expression features, much less sophisticated than Perl-

style regular expressions. Nevertheless, it appears to be adequate for the purpose at hand,

and runs faster than more elaborate matching engines.

A pattern string may denote either a simple or a rich pattern. Simple patterns are easier

to express and are expected to suffice for many everyday matching applications. When more
precision is required, rich patterns may be used for more expressive power.

No alternation is provided in the pattern language itself. To achieve the effect of alter-

nation, multiple pattern strings may be supplied instead of a single pattern. Each pattern

in the list is tried in sequence until a match is obtained. Thus the output strings issue from
the first pattern to produce a nonempty result.

An empty list of patterns will match no strings. A null pattern ( .... ), however, matches
any string but returns no useful values. Typically, various substrings are extracted and

returned as the result of the matching process. Successful matches that return no output

strings result in the default value of a single empty string.

4.3.2 Simple Patterns

Simple patterns allow matching against literal characters, whitespace fields, and arbitrary

substrings. Pattern strings comprise a mixture of literal characters and meta-strings for

designating text fields. Each literal character must match itself in the target string. Each

field designator matches a string of zero or more characters in the target string.

Meta-strings denote either whitespace fields or non-whitespace fields. A whitespace field

is indicated by a space character in the pattern, which stands for a field of zero or more

whitespace characters (space, tab, form feed, or newline). A non-whitespace field is a meta-

string consisting of the percent (?0) character followed by a digit character (0 9). Such a
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Table 4.2: Examples of simple pattern matching using the formulas in Table 4.1

Pattern Matching string(s) Captured fields

(? 1 "%l(r!l)")

(? 1 "sqrt(sq(%1))")

(? -2 "r!l = %1")

(? 1 "%1(%0) <")

(? -1 "> %1 - %0")

(? 1 "%1(%0) < %1(%2)")

(? (! (-2 1) R) "%1x!1")

sqrt (r! i)

sqrt(sq(x!l / 4))
r!l = 2 * x!l + 1

sqrt(r!l) <

>r!l- 1

All of formula l

2 * x!l, sqrt(sq(x!l

sqrt

x!l /4

2. x!l + 1

sqrt
r!l

sqrt, sq(x!l / 4)

2 * , sqrt(sq(

field matches zero or more arbitrary characters in the target string. Both capturing and

non-capturing fields are provided. A capturing field causes the matching substring to be

returned as an output string.

The meta-string %0 denotes a noncapturing field, while those with nonzero digits are

capturing fields. If a nonzero digit d is the first occurrence of d in the pattern, a new

capturing field is thereby indicated. Otherwise, it is a reference to a previously captured field

whose contents must be matched. Note that the nonzero digits used must be consecutive

starting with 1 (e.g., "°/,1 = %3" is improper).

We illustrate the formulation of simple patterns using the notation just described. Ta-

ble 4.2 shows the result of matching various patterns against the sample formulas.

4.3.3 Rich Patterns

Rich patterns follow the same basic approach as simple patterns, but add extensions for

multiple matching types and multiple text field types. To be distinguished from simple

patterns, rich patterns must begin with the character '_'. To specify the type of matching

requested, the second character of the pattern encodes the user's choice. Thus a rich pattern

has the form _<match type><pattern string>.

Table 4.3 shows the match types currently offered. Note that the default (partial string

match) can be obtained by omitting the match type code, in which case the second character

is interpreted as part of the pattern string. Obviously, this will not work if the first character

of the pattern string is one of the match type encodings.

In a full string match, the pattern must match against the entire text string under

consideration. A partial string match is less strict, admitting any substring that satisfies

the pattern. Generally, the left-most substring with the largest extent is chosen for a partial
match.

The type-s match allows a partial match to determine a boolean outcome, then returns

the full input string as the result if successful. In effect, this lets matching be used as a

filter to allow all or none of the string to pass. None of the strings captured via %1, %2,

etc., will be included in the result. Also returned is the CLOS object for the input string,

where applicable. This allows the result of a type-s match to be used as input to a location
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Table 4.3: Character encoding for match types.

Character Match type

f

P

s

t

b

<digit>

Other

Full string match

Partial string match (first substring to match)

Partial match returning full string if successful

Top-down expression matching

Bottom-up expression matching

Top-down expression matching, skipping top-most <digit> levels

Partial string match

reference.

Expression-oriented matching is also provided, which allows matching to proceed with

respect to the parse tree of an expression. In top-down matching, a pre-order traversa]

of the tree is performed where matching is attempted at each visited node. If the textual

representation of the expression denoted by the node matches the pattern, traversa] stops

and returns the match result. Otherwise, matching is attempted on each subexpression in

left-to-right order. Currently, the most common syntactic features of PVS expressions are

accommodated, e.g., infix and prefix function applications, but not all language features are

included. If a pattern does not match as expected, it might be due to this incompleteness

in the current implementation. We will extend the matching later to incorporate other

elements of the PVS grammar.

Bottom-up expression matching (post-order traversal) may be requested as well as top-

down matching. In addition, restricted top-down matching may be performed by skipping

the top few levels of the expression tree. This is useful to avoid undesired matches caused

by greedy matching of parenthesized expressions. Naturally, complex formulas can give rise

to expensive searches when these expression-oriented forms of matching are used.

Capturing and non-capturing text fields are extended in rich patterns to allow multiple

field types. The basic field designator is extended to a three-character sequence of the form

°/,<digit><field type>. Table 4.4 shows the field types currently offered. If the field type

character is omitted, the default type is *, which is the same as the field type for simple

patterns. Field types in rich patterns enable more discriminating searches than those of

simple patterns.

To illustrate the use of these extended pattern features, Table 4.5 shows the result of

matching various rich patterns against the sample formulas.
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Table4.4:Characterencodingfor text fieldtypes.

Character Fieldtype

+

i

#

Other

Zero or more arbitrary characters

One or more arbitrary characters

One or more arbitrary characters, where the first

and last are non-whitespace characters

PVS identifier (allows ! for prover variables)

Numeric field (digits only)
Same as *

Table 4.5: Examples of rich pattern matching using the fornmlas in Table 4.1

F# Pattern Matching string Captured fields

-2

-2

-2

-2

-2

1

1

1

1

-1

1

1

1

1

-1

-1

-1

1

-2

@pr!l = %1_

@p%l# * %2i

@s%l# * %2i

@f%l# * %2i

Cp%l# * %1

@p%li(r!l)

@p%ii(%0*)

¢s%ii(%0*)

Cpsqrt(sq(%l*))

@p%li - %0*

Ctsq(%l*)

@isq(%l*)

@2sq(%l*)

@bsq(%l*)

@f%ii(%0*) < _i(_2.)

@p%1_=%2_

r!l = 2 * x!l + 1

2 * x!l

2 * x!l

None

None

sqrt (r i)

sqrt (r i)

sqrt (r i)

sqrt(sq(x!l / 4))

r!l - 1

sq(x i / 4))

sq(x i / 4))

sq(x i / 4)

sq(x i / 4)

x!i * r i + y!i * r!i

x!l * r 1

x!l * r 1

All of _rmula 1

None

2 * x!l + 1

2, x!l

All of %rmula-2

sqrt

sqrt
All of formula 1

x!i/4

r!l

x!l / 4)

x!l / 4)

x!l/4

x!l/4

x!l * r!l + y!l, r!l

x!l, r!l

x!l, r!l

sqrt, sq(x!l / 4)
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Chapter 5

General Purpose Strategies

This chapter describes a set of general purpose PVS prover strategies for manipulating

arbitrary sequents. They are not specialized for arithmetic. Some offer generic capabilities

useful in implementing other strategies for specific purposes. Table 5.1 lists the strategies

provided along with their formal argument lists.

Often prover users would like ways to capture expressions from the current sequent and

use them to build arguments to prover commands such as case. We have provided extended

expressions to achieve this capture. Next we add a parameter substitution technique to yield

a major new way to formulate prover commands. To complete the suite, we add a family

of higher-order strategies that substitute strings and formula numbers into a parameterized

command (rule or strategy). The command can be regarded as a template expression

(actually, a Lisp form) in which embedded text strings and special symbols can serve as

formal parameters for substitution.

Consider a simple example. Suppose formula 2 is

sin(2 * PI * omega!l + delta!l) >= 0

and we wish to claim that the sin argument is nonnegative. The command

(invoke (case "%1 >= 0") (! 2 L 1))

accomplishes this task by invoking the prover command

(case "2 * PI * omega!l + delta!l >= 0")

as if it had been typed in this form.

5.1 Parameter Substitution

The outcome of evaluating an extended expression can be used to carry out textual and

symbolic substitutions within a parameterized command. Such a command is assumed to

be a Lisp form:

(<rule/strategy> <argument i> ... <argument n>)
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Table 5.1: Summary of general purpose strategies.

Syntax Function

(invoke command _rest expr-specs)

(for-each command _rest expr-specs)

(for-each-rev command _rest expr-specs)

(show-subst command _rest expr-specs)

(claim cond _opt (try-just nil)

_rest expr-specs)

(name-extract name _rest expr-specs)

Invoke command by instantiating

from expressions and patterns

Instantiate and invoke separately

for each expression

Invoke in reverse order

Show but don't invoke the

instantiated command

Claims condition on terms

Extract & name expr, then replace

(move-to-front _rest fnums)

(rotate--)

(rotate++)

Reorder sequent formulas

Rotate antecedent list

Rotate consequent list

(use-with lemma _rest fnums)

(apply-lemma lemma _rest expr-specs)

(apply-rewrite lemma _rest expr-specs)

Use a lemma with formula

preferences for instantiation

Use lemma with expressions

Rewrite with expressions

The argument expressions can be numeric, textual, or symbolic values as well as paren-

thesized expressions. This can lead to nesting of arbitrary depth. As usual at the prover

interface, neither the top-level parenthesized expression nor its arguments are evaluated as

normal Lisp expressions. The interpretation of arguments is left for the proof rule to carry

out when it is finally invoked.

Input data for the substitution process is a list of expression descriptors computed during

the evaluation of one or more extended expression specifications. As described in Chapter 4,

each descriptor contains a text string and, optionally, a formula number and CLOS object.

The descriptor list is the source of substitution data while the parameterized command is

its target.

Within this framework, we allow two classes of substitutable data: literal text strings

and Lisp symbols. The top-level parenthesized expression is traversed down to its leaves.

Wherever a string or symbol is encountered, a substitution is performed. The final com-

mand thus produced will be invoked as a prover command in the manner defined for the

chosen higher-order strategy. (In Lisp programming terms, this process can be imagined

as evaluating a backquote expression with specialized implicit unquoting. It also has some

similarities to substitution in Unix shell languages as well as the scripting language Tcl.)

Parametric variables for substitution are allowed as follows. Within literal text strings,

the substrings Xl, ..., X9 serve as implicit text variables. The substring Xi will be replaced

by the string component of the first expression descriptor. The other X-variables will be
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Table5.2:Specialsymbolsfor commandsubstitution.

Symbol Value

$1, $2 ....

$*
$1s, $2s ....

$*s

Sin, $2n ....

$*n

$1j, $2j ....

$,j

$+, $+s, $+n, $+j

nth expression descriptor

List of all expression descriptors

nth expression string

List of all expression strings

Formula number for nth expression

List of all formula numbers

CLOS object for nth expression

List of all CLOS objects

Duplicate-free versions of $*, $*s, $*n, $*j

replaced in order by the corresponding strings of the remaining descriptors.

Aggregations may be obtained using the string Z* and it variants. Z* will be replaced

by a concatenation of all expression strings. %, behaves the same except that it separates

the strings using the delimiter ", J'.

Certain reserved symbols beginning with the $ character are provided to serve as sub-

stitutable symbolic parameters. Such symbols are not embedded within string constants

as are the %-variables; they appear as stand-alone symbols within the list structure of the

parameterized command. The symbols $1, $2, etc., represent the first, second, etc., ex-

pression descriptors from the list of available descriptors. These symbols should be used as

arguments to strategies that require a location-reference type of extended expression. They

may be used as arguments for strategies in this package whenever terms or formula numbers

are called for.

Variants of these symbols exist to retrieve the text string, formula number, and CLOS

object components of a descriptor. These are needed to supply arguments for built-in prover

commands, which are not cognizant of extended expressions. The symbols Sls, $1n and

$1j serve this purpose. Note that CLOS object values have no use when entering prover

commands from the keyboard. They are provided for the convenience of strategy writers.

Aggregations may be obtained using the symbol $* and it variants. A list of all source

expression descriptors is given by $* while the list of strings and formula numbers is given

by $*s and $*n. Because one formula might be associated with multiple expressions, the

descriptor list can contain duplicate formula numbers. A list without duplicates is available

from the symbol $+n. Table 5.2 summarizes the special symbols usable in substitutions.

We note that when using the list-valued symbols, their values are "spliced" into the

surrounding Lisp expression. If they are used in a context that requires parentheses, they

need to be supplied by the user. For example, if $+n has the value (1 3 5), then (hide $+n)

will be expanded to (hide 1 3 5). Conversely, (hide-aJ_J_-but ($+n)) will be expanded

to (hide-aJ_l-but (1 3 5) ). In the following sections we present more examples of how the

°/0-variable and S-variable substitutions are applied to produce a final instantiated command.
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5.2 Invocation Strategies

The following higher-order strategies make use of the parameter instantiation features to

construct and invoke prover command instances.

invoke command _rest expr-specs [Strategy]

This strategy is used to invoke command (a rule or strategy) after applying substitutions

extracted by evaluating the expression specifications expr-specs. All expression descriptor

lists are appended to form a single list before substitution occurs. Note that there is

not a one-to-one correspondence between descriptors and expression specifications. Each

specification can produce zero or more descriptors.

As an example, suppose formula 3 is

f(x!l + y!l) <= f(a!l * (z!l + I))

Then the command

(invoke (case "%1 <= %2") (? 3 "f(Z1) <= f(Z2)"))

would apply pattern matching to formula 3 and create the bindings °hi = "x!i + y!i" and

°h2 = "a! 1 * (z! 1 + 1)", which would result in the prover conlmand

(case "x!l + y!l <= a!l * (z!l + 1)")

being invoked. An alternative way to achieve the same effect using location referencing is

the following:

(invoke (case "Z1 <= Z2") (! 3 * 1))

String substitutions are not limited to command arguments that accept PVS language

expressions. They may also be used to construct function, lemma and theory names.

As another example, suppose we wish to hide most of the formulas in the current sequent,

retaining only those that mention the sqrt function. We could search for all formulas

containing a reference to sqrt using a simple pattern, then collect all the formula numbers

and use them to invoke the hide-all-but rule. Applying invoke as follows

(invoke (hide-all-but ($+n)) (? * "sqrt"))

would hide all formulas except those containing the string sqrt.

for-each command arest ezpr-specs [Strategy]

This strategy is used to invoke command repeatedly, once for each expression generated by

ezpr-specs. The effect is equivalent to applying (invoke command <expr i>) n times.

As an example, suppose we wish to expand every function in the consequent formulas

that has the expression "n! 1 + l" as its argument. The following command carries this

out, assuming there is only one such expression per formula.

(for-each (expand "°/.1")(? + "@pZli(n!l + i)"))
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for-each-rev command _rest expr-specs [Strategy]

This strategy is identical to for-each except that the expressions are taken in reverse order.

As an example, suppose we wish to find all the antecedent equalities and use them for

replacement, hiding each one as we go. This needs to be done in reverse order because

formula numbers will change after each replacement.

(for-each-rev (replace $1n :hide? t) (! ...... ))

show-subst command _rest expr-specs [Strategy]

This strategy does not invoke any commands, but applies the matching and substitutions

as the strategy invoke would. The instantiated command is displayed so the user can see

the result of substitutions without actually attempting any proof commands. The idiom

(show-subst ($*) <ext expr i> ... <ext expr n>)

allows a convenient display of the descriptors produced by evaluating extended expressions.

Tweaking the expressions and iterating enables the user to converge on a correct formulation

before invoking an actual prover command.

claim cond _optional (try-just nil) &rest expr-specs [Strategy]

The claim strategy is basically the same as the primitive rule case, except that the formula

expression is derived using the parameterization technique described in Section 5.1. It also

differs by being limited to only two-way case splitting. The condition presented in argument

cond is a parameterized string expression of the kind described in Section 5.1. It may be

instantiated by the terms found in the _rest argument expr-specs. For example, to claim

that a numerical expression lies between two others, we could use something like

(claim "%i <= %2 _ '/,2 <= %3" nil "a/b .... x+y .... c/d")

to generate a case split on the formula:

a/b <= x+y _ x+y <= c/d

Argument try-just allows the user to try proving the justification step (the second case

resulting from the case split).

Usage: (claim "%1 + PI = %2" T "phi!l .... theta!l") introduces a claim and tries

to prove it using grind.

name-extract name &rest expr-spec8 [Strategy]

Rather than invoking a command, this strategy is used to compute a list of expressions,

then extract each expression string from it, assign a name to the expression, and finally,

replace the expression by the name. If expr-specs evaluates to multiple expressions, unique

names are formed by appending an index to name. The equality formulas generated by

the internal name-replace commands are not hidden. This strategy is useful for removing
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embeddedexpressionsandlifting themto onesideof anequalityfornmla,wherethevarious
arithmeticmanipulationstrategiescanbeappliedthereafter.

Usage: (name-extract angle (? 3 "2 * sin(7,i)")) applies the pattern to find the

argument to the sin function, giving it the name ANGLE, then replaces it throughout the

sequent.

5.3 Substitution Shortcuts

To streamline user input for simple cases, we provide the following shortcuts usable during

the substitution process.

• Embedding extended expressions in strings. Commands such as

(claim "ZI < Z2" nil (! 1 2) (! 3 4))

may be rewritten to a form that embeds the extended expressions in the target string:

(claim "_! 1 27, < 7,! 3 4_")

Location references may be embedded by replacing the outer-most parentheses with

percent characters. After evaluation, the first expression string generated by each

location reference will replace the corresponding 7,!...7, substring. Concurrent use

of 7,-variables in the same string is possible. Embedding pattern match expressions is

also possible but not recommended because of the need to escape quote characters.

• Embedding extended expressions in list structures. Commands such as

(invoke (hide $*n) (? + "cos"))

may be rewritten to a form that embeds the extended expressions in the target list:

(invoke (hide (? + "cos")))

Either location references or pattern match expressions may be embedded this way.

The effect is to extract the formula numbers yielded by the evaluation and substitute

them for the (! ...) or (? ...) sublist. If the results need to be contained in a

single list argument to a rule, add an extra set of parentheses, as in:

(invoke (hide-all-but ((? + "cos"))))

5.4 Formula Reordering Strategies

The next group of strategies includes several for manipulating the order of formulas within

a sequent. Formula reordering can be helpful before instantiating quantifiers using inst?

or applying lemmas via the use rule. It also can be helpful as a component of higher level

strategies where uniform placement of formulas is needed.
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move-to-front &rest fnums [Strategy]

Invoking move-to-front on a list of formulas causes them to be pulled to the front of their

respective lists (antecedents or consequents). They remain in the same relative order that

they appeared initially regardless of the order in which they are listed in argument/hums.

Example: (move-to-front -4 3 -2 2) causes the new order to become -2, -4, -1, -3 _- 2,

3, 1.

rotate-- [Strategy]

rot at e++ [Strategy]

These strategies cause the antecedent (--) or consequent (++) formulas to be "rotated,"

i.e., the first formula is moved to the end and all the others move up by one.

5.5 Lemma Invocation Strategies

This final group of strategies is used to invoke lemmas in various ways not already provided

by the built-in prover commands.

use-with lemma &rest fnums [Strategy]

The use command for importing and instantiating lemmas sometimes chooses wrong or

useless variable instantiations. We could improve the chances for correct selection in some

cases by reordering the formulas so that preferred terms are tried earlier in the instantiation

process. The use-with strategy implements this heuristic by creating a temporary copy

of the terms in ]hums and placing it at the front of the sequent (formula -1). Then a use

command for lemma is invoked so that the search for instantiable terms begins with the

temporary formula. The effect is to consider terms from the user's preferred formulas (in

the order given) before looking elsewhere in the sequent. Instantiation heuristics apply

various criteria for suitability so this tactic might not achieve the desired effect.

Usage: (use-with "sin_gt_0" 3 -2) tries to instantiate the variables of sin_gt_0 by

first examining the terms of formulas 3 and -2.

apply-lemma lemma &rest expr-specs [Strategy]

apply-rewrite lemma &rest expr-specs [Strategy]

Occasionally is it necessary to provide explicit instantiations when applying lemmas or

rewrite rules. This happens when the prover's automatic instantiation heuristics fail to

pick out the desired expressions. In such cases, these two strategies provide an abbreviated

way to force the binding of expressions to lemma variables. It is necessary to know the

lemma variable names so that the expressions can be supplied in the correct order. PVS

lists lemma variables in alphabetical order when the inst command is invoked. This is the

order in which expressions should be supplied in the strategy command, apply-lemma has

an effect similar to the use command, apply-rewrite is similar to rewrite, although only

equality rules are currently handled.
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Chapter 6

Emacs Extensions

This set of extensions introduces PVS prover shortcuts that help when manipulating se-

quents. The package streamlines interactive strategy invocation by assisting with certain
types of argument entry. It adds features similar to those of the PVS prover helps package

originally developed by C. Michael Holloway of NASA Langley and now distributed with

PVS. Also provided are miscellaneous Emacs features to help with proof maintenance and
other assorted tasks.

6.1 Prover Command Invocation

Two specific interface features are incorporated. One is a means of invoking strategies that

prompts the user through the argument list so it is unnecessary to memorize the formal

argument lists of strategies. This works for all the built-in prover rules and strategies as
well. The other feature allows the user to streamline cut-and-paste operations by supporting

argument entry via mouse-dragging selections. This is helpful when it is necessary to include
PVS expressions clipped from the current sequent. Both of these features are incorporated

into a single TAB-command invocation sequence.

The basic usage pattern is as follows.

TAB-z initiates the command entry sequence. The user is prompted for the name of

a strategy (or rule) to invoke. The user will be prompted for inputs according to the

formal argument list of the chosen rule or strategy.

To supply a value for an argument, the user has the choice of either entering text in

the minibuffer, or selecting a region of text in the prover's Emacs buffer, either by a

mouse selection or any other means that sets point and mark.

A typed minibuffer text argument is terminated by a CR (return/entry) in the usual

way. For a text region selection, TAB-, (TAB key followed by comma) causes the text

region to be grabbed and added to the list of strategy arguments.

Quotes are added automatically to selected text but not to typed text because it

might contain numbers or other constants. The user repeats the text entries or region

selections until all required arguments have been supplied.
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If there are aoptional arguments, the user is prompted for these as well and may

enter them using the same methods. Optional argument keywords are not typed.

Entering a null string in the minibuffer for an optional argument selects its default
value.

Entering a ";" for any optional argument causes the remaining optionals to be skipped

and will proceed to the _rest argument phase if such an argument exists. Otherwise,

";" terminates argument entry. A TAB-; (TAB-semicolon) typed after a region selec-

tion has the same effect of moving to the next phase.

• Rest argument entry proceeds for as many values as the user wishes to supply.

• Entering the string "V' (single backslash character) discards the last argument and

rolls back to the previous one.

Argument entry may be terminated at any time in the &optional or _rest phases by

supplying the value "." in the minibuffer. Typing TAB-. (TAB-period) after a region

selection has the same effect.

• After the desired sequence of arguments has been gathered, the completed rule or

strategy command is sent to the prover.

This sequence may be abandoned at any point before completion using C-g and the partially

constructed command will be deleted from the end of the Emacs buffer.

6.2 Proof Maintenance Utilities

Several functions are available to assist with proof maintenance activities.

Maintaining PVS proofs sometimes requires replaying previous proofs after chang-

ing one or more theories, then editing failed steps embedded deep within the tree

structure of commands. TAB-y is a utility to assist in finding the correct proof

node in the Emacs buffer Proof, which is created by various commands such as

M-x edit-proof. Position the cursor at the beginning of a proof label such as

tan_increasing_imp.3.2.2 in the prover buffer *pvs*. The label will be parsed

and the cursor moved to the buffer Proof at the first step of the branch determined

by the label. It is also possible to use labels found in prover messages such as:

This completes the proof of tan_increasing_imp.3.2.2.

The period at the end of the line will be recognized as punctuation rather than a part

of the label and thus discarded by the label parser.

The interactive Emacs Lisp function M-x expand-strategy-steps allows a user to

"expand" the strategy steps of a proof file, provided no proof is in progress. The user

will be prompted for a proof file name. Each rule in the proof file is checked against

a list of base rules found in the core PVS distribution. Any strategy name not found

there is appended with a _$' character so that it becomes a nonatomic command,
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causing the next proof attempt to expand it into steps found only in the core rule

base. A backup file of the original proofs is saved in a . sprf version of the proof file.

Finally, the revised proof file is installed to make it current.

This feature can be used for several purposes:

- It allows proofs to be developed using domain-specific strategies tbr increased

productivity then converted to a portable form using only core proof rules.

- It allows proofs to be rerun without strategies to confirm that no unsoundness

has been introduced by the strategies.

- It allows users to create personal strategies for proof development, even highly

speculative ones, knowing that proofs can be easily purged of nonstandard com-
mands should the strategies be later discarded or abandoned.

• The interactive Emacs Lisp function M-x restore-strategy-steps allows a user to

restore the strategy steps found in a previously saved . sprf file. The current .prf

file is simply replaced by the . sprf file. This function may not be invoked while a

proof is in progress. The restored proof file is installed to make it current.

6.3 Other Emacs Extensions

Other Emacs features and TAB key assignments are provided for miscellaneous purposes.

A feature of interest to both strategy writers and users is a quick way to restore the

prover's state after a Lisp error is detected. TAB-] (right bracket) enters the Lisp

command (restore) to return the prover to its previous state.

As seen earlier, several commands require the user to embed parameters in control

strings using the percent (%) character. This causes a problem when installing edited

proofs because of the well-formedness checking performed by the PVS install-proof

function. In particular, % characters are interpreted as PVS comment characters,

which can cause some expressions to fail the balance checks.

To avoid this problem by suppressing the string balance checks, we have added an

alternative function called install-proof !. After editing a proof, a user may invoke

install-proof! using the (modified) key binding C-x C-s, while the regular version

of install-proof is still available using C-c C-i or C-c C-c.
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Chapter 7

Prelude Extensions

PVS allows users to extend the prelude with additional theories to support widely useful

deductions. Manip takes advantage of this feature by loading a prelude extension library on

start-up. In particular, the theory extra_real_props is added to enrich the standard pre-

lude theory real_props. The extra lemmas are thereby made available to Manip strategies

in a transparent manner; users need take no actions to make these lemmas visible. In fact,

they need not even be aware of their existence and can simply use the strategies without

concern for how additional facts are obtained.

7.1 Overview of extra real props

Prelude extensions may be loaded within PVS using M-x load-prelude-library. This

operation is also callable as an Emacs Lisp function. Manip has an Emacs Lisp start-up file

called pvs-prover-manip, el, which is loaded by the user's '.pvsemacs' file. The following

excerpt shows how the prelude extension is loaded.

;; The Prelude extension library adds lemmas needed by various strategies.

;; Extension files are kept in a version-specific subdirectory. Library

;; loading needs to run on a hook because library is unloaded during a

;; change-context operation.

(add-hook "change-context-hook

' (lambda ()

(load-prelude-library pvs-prover-manip-version-subdir)))

The extension is reloaded on every context change operation within PVS because of the

data structure resetting performed during a context change.

The extension theory itself is merely a collection of lemmas that closely resemble those

found in theory real_props.

_ Contains extra properties about reals needed by the formula

_ manipulation strategies in package Manip. Can be seen as an

_ extension of the real_props theory in the prelude.

extra_real_props: THESRY
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BEGIN

Z_ Same variable declarations as real_props in the prelude:

w, x, y, z: VAR real

nOw, n0x, n0y, n0z: VAR nonzero_real

nnw, nnx, nny, nnz: VAR nonneg_real

pw, px, py, pz: VAR posreal

npw, npx, npy, npz: VAR nonpos_real

nw, nx, ny, nz: VAR negreal

< Variations on real_props lemmas >

END extra_real_props

Extension lemmas adhere to real_props conventions as nmch as possible. This includes
variable names as well as lemma names. Proofs for all the lemmas are contained within the

Manip package.

Most of the extension lemmas exist to provide more general versions of real_props

lemmas, that is, the types of their variables are more inclusive. For example, a real_props

lemma might require certain variables to be strictly positive or negative. Its extension analog

might relax the type to the nonzero reals by using conditional expressions. Typically this

makes the extension versions less useful as rewrite rules, but offers advantages for the sorts

of interaction performed using our strategies.

Relaxing variable types in some instances means abandoning rewrite rules written in

the form of IFF expressions and casting them as implications instead. Again, this makes

sense for the types of interactive strategies they are intended to serve.

7.2 Selected Extension Lemmas

The prelude contains the following lemmas for canceling factors in equalities:

both_sides_timesl: LEMMA (x * n0z = y * n0z) IFF x = y

both_sides_times2: LEMMA (n0z * x = n0z * y) IFF x = y

The canceled terms must be nonzero for these equivalences to hold. By weakening the

relation to implication, we can allow the canceled terms to be arbitrary reals, as is done in

the following extension lemmas used by the mult-by strategy.

both_sides_timesl_imp: LEMMA x = y IMPLIES x * w = y * w

both_sides_times2_imp: LEMMA x = y IMPLIES w * x = w * y

For inequalities, the corresponding prelude lemmas differentiate on the canceled term

being strictly positive or negative.

both_sides_times_pos_lel: LEMMA x * pz <= y * pz IFF x <= y

both_sides_times_pos_le2: LEMMA pz * x <= pz * y IFF x <= y
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both_sides_times_neg_lel: LEMMA x * nz <= y * nz IFF y <= x

both_sides_times_neg_le2: LEMMA nz * x <= nz * y IFF y <= x

Again, introducing an implication form allows the types in extension lemmas to include

zero.

both_sides_times_pos_lel_imp: LEMMA x <= y IMPLIES x * nnw <= y * nnw

both_sides_times_pos_le2_imp: LEMMA x <= y IMPLIES nnw * x <= nnw * y

both_sides_times_neg_lel_imp: LEMMA y <= x IMPLIES x * npw <= y * npw

both_sides_times_neg_le2_imp: LEMMA y <= x IMPLIES npw * x <= npw * y

The following prelude lemmas allows us to eliminate divisions by multiplying both sides

of an inequality by a positive or negative quantity.

div_mult_pos_itl: LEMMA z/py < x IFF z < x * py

div_mult_pos_it2: LEMMA x < z/py IFF x * py < z

div_mult_neg_itl: LEMMA z/ny < x IFF x * ny < z

div_mult_neg_it2: LEMMA x < z/ny IFF z < x * ny

For occasions where the divisor could be any nonzero real, we provide extension lemmas

that rewrite into conditional expressions.

div_mult_pos_neg_Itl: LEMMA

z/nOy < x IFF IF nOy > 0 THEN z < x * nOy ELSE x * nOy < z ENDIF

div_mult_pos_neg_It2: LEMMA

x < z/nOy IFF IF nOy > 0 THEN x * nOy < z ELSE z < x * nOy ENDIF

Prelude cancellation lemmas also adhere to the positive-negative dichotomy.

both_sides_times_pos_itl: LEMMA x * pz < y * pz IFF x < y

both_sides_times_pos_it2: LEMMA pz * x < pz * y IFF x < y

both_sides_times_neg_itl: LEMMA x * nz < y * nz IFF y < x

both_sides_times_neg_it2: LEMMA nz * x < nz * y IFF y < x

Generalizing them for nonzero reals also introduces conditional expressions.

both_sides_times_pos_neg_itl: LEMMA

IF n0z > 0 THEN x * n0z < y * n0z ELSE y * n0z < x * n0z ENDIF IFF x < y

both_sides_times_pos_neg_it2: LEMMA

IF n0z > 0 THEN n0z * x < n0z * y ELSE n0z * y < n0z * x ENDIF IFF x < y
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The mult-cases strategy generates case analyses for relations on products. To carry

this out for arbitrary reals requires more complex lemmas than the prelude provides. Several

extension lemmas have been introduced for this purpose. They are much more complicated

than related prelude lemmas and have no direct analogs. An example fbllows.

It_times_it_anyl: LEMMA

IF w = 0 OR x = 0

THEN 0 < y AND 0 < z 8R y < 0 AND z < 0

ELSIF w > 0 IFF x > 0

THEN (y > 0 IFF z > O) AND

(abs(w) <= abs(y) AND abs(x) < abs(z) OR

abs(w) < abs(y) AND abs(x) <= abs(z))

ELSIF y > 0 IFF z > 0

THEN true

ELSE abs(w) >= abs(y) AND abs(x) > abs(z) OR

abs(w) > abs(y) AND abs(x) >= abs(z)

ENDIF

IMPLIES w * x < y * z

A few additional extension lemmas were needed to fill in gaps left by real_props. The

lemmas below add cases omitted from similar prelude lemmas.

div_cancel4: LEMMA x = y/n0z IFF x * n0z = y

zero_times4: LEMMA 0 = x * y IFF x = 0 OR y = 0

times_div_cancell: LEMMA (n0z * x) / n0z = x

times_div_cancel2: LEMMA (x * n0z) / n0z = x

Finally, a few extension lemmas were included merely to correct inconsistent naming in

certain real_props lemmas. They are simple renamings of existing lemmas.

div_mult_pos_gtl: LEMMA z/py > x IFF z > x * py

div_mult_pos_gt2: LEMMA x > z/py IFF x * py > z

div_mult_neg_gtl: LEMMA z/ny > x IFF x * ny > z

div_mult_neg_gt2: LEMMA x > z/ny IFF z > x * ny
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Chapter 8

Aids for Strategy Writing

For users wishing to develop their own prover strategies, our package provides support in

two ways. First, higher-order strategies and extended expressions reduce the need for low-

level coding. Second, a set of Lisp utility functions is available for use once the package is

loaded.

8.1 Defining New Strategies

Invocation strategies are useful as building blocks for more specialized strategies that users

might need for particular circumstances. Extended expressions can support an alternative

to the more code-intensive strategy-writing style that requires accessing the data struc-

tures (CLOS objects) representing PVS expressions. The invocation strategies can make

writing lightweight strategies more accessible to users without a deep background in Lisp

programming.

Consider a simple example. We wish to automate a specialized type of backward chaining

process. Suppose a consequent formula exists having the form f(el) <-- f(e2) for two

expressions el and e2. If f is monotonic and we know we can prove that el _< e2, this would

suffice to establish the consequent formula. So we would like to back-chain on this goal to

produce the new goal el <= e2. The following strategy definition accomplishes this task

by applying the pattern matching features.

(defstep backchain-leq (fnum)

(let ((case-step

_(invoke$ (case "_2 <= _3") (? ,fnum "@f_li(_2*) <= _i(_3.)"))))

(branch case-step ((assert) (skip))))

"Backchain on inequality in FNUM for monotonic function."

"~_Backchaining on inequality in formula _A")

The pattern recognizes the desired inequality form for an arbitrary function and extracts

the embedded arguments. A case rule invocation is constructed using these expressions.

Of the two goals produced by the case rule, one is simplified using assert, while the other

is the main branch left for the user to continue.
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8.2 Support Functions

Several Common Lisp functions defined in this package might be of use to strategy writers.

They are used to access PVS data structures and perform other routine but frequently

needed chores.

get-equalities [Function]

get-equalities returns a list of formula numbers for all antecedent equalities found in the

current sequent.

get-relations fnums [Function]

Collect the formula numbers for all the relational formulas in the current sequent, omitting

the case of the/= operator.

map-fnums-arg fnums [Function]

Use map-fnums-arg to map fnums into a list of concrete formula numbers, converting the

symbols +, -, * and formula labels as needed.

extract-fnums-arg ]hums [Function]

This utility extracts a list of formula numbers from an input that could include either

extended expressions or conventional formula numbers.

map-t erm-nums-arg tnums [Function]

Use map-term-nums-arg to map tnums into a list of concrete term numbers, converting the

symbol * and special form (^ ...) as needed.

manip-get-f ormula ]hum [Function]

manip-get-formula retrieves from the current goal the PVS data object corresponding to

the formula specified in ]hum. For an antecedent formula, the unnegated form is returned.

The object returned is a CLOS object instance belonging to whatever class corresponds to

the top-level PVS expression.

percent-subst pattern values [Function]

Textual substitution of template variables %1,..., %n, as discussed in Section 5.1, is per-

formed by percent-subst using the list of values provided. Ideally, the number of elements

in list values should equal n, the number of template variables.

percent-t o-regexp-patt ern pattern [Function]

This function maps a pattern written in the pattern language, i.e., strings involving text
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fielddesignators,into aregularexpressionsuitablefor matchingandcollectingsubstrings.
Theresultingregularexpressionmayto bepassedto theLispfunctionexcl :match-regexp
(undertheAllegroimplelnentation)to carryout patternmatchingandobtaina lnultiple-
valueoutcome.

eval-ext-expr expr-spec [Function]

Extended expression specifications are evaluated by this function. It returns a list of expres-

sion descriptors, each of which is a structure containing the values <expr string>, <fnum>

and <CLOS object>. Some descriptors will not have meaningful values for each component.

The value nil is supplied in such cases.

build-instan-cmd cmd descriptors [Function]

An instantiated command is constructed by this utility function. Substitutions for all special

symbols are performed and a fully instantiated command is returned as the function's value.

try-justification name try-just

Generate a step using TRY that tries

backtracks on failure.

to prove

[Function]

a justification branch using try-just and
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Chapter 9

Examples

We now present in full several prooN that make use of the Manip package strategies. The

following definition and lemmas are taken _om the NASA Langley trigonometry library [12],

in particular, _om the theory trig_approx. They are concerned with various properties of

the sine power series (ret_r to equation (1.2) on page 2).

sin_term(a)(i) : real = (-1)^(i-i) * a^(2*i-1)/factorial(2*i-l)

sin_term_nonzero : LEMMA 0 /= a IMPLIES sin_term(a)(n) /= 0

sin_term_next : LEMMA sin_term(a)(n+l) =

sin_term(a)(n) * -I * a*a / ((2*n+l) * 2*n)

sin_terms_alternate : LEMMA 0 < a IMPLIES (sin_term(a)(n+l) < 0 IFF

sin_term(a)(n) > 0)

sin_terms_decr : LEMMA 0 < a AND a <= PI/2 IMPLIES

abs(sin_term(a)(n)) > 2 * abs(sin_term(a)(n+l))

Annotated prooN of the four lemmas appear in the following sections.

9.1 Proof of Lemma sin_term_nonzero

Lemma sin_term_nonzero is a simple property of the sin_term function.

sin_term_nonzero :

.......

{i} FORALL (a: real, n: posnat): 0 /= a IMPLIES sin_term(a)(n) /= 0

Rerunning step: (SKOSIMP*)

Repeatedly Skolemizing and flattening,

this simplifies to:

sin_term_nonzero :

{-i} sin_term(a!l)(n!l) = 0
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I .......

{1} 0 = a! 1

Rerunning step: (EXPAND "sin_term")

Expanding the definition of sin_term,

this simplifies to:

sin_term_nonzero :

{-i} (-i) ^ (n!l - i) * a!l ^ (2 * n!l - i) / factorial(2 * n!l - i) = 0

I .......

[13 0 = a!l

We see that formula -1 could be simplified to a 2n-1 = O, from which we can deduce that

a = O. First we eliminate the division with cross-mult.

Rerunning step: (CROSS-MULT)

Multiplying both sides of selected formulas by LHS/RHS divisor(s),

this simplifies to:

sin_term_nonzero :

{-i} (-i) ^ (n!l - i) * a!l ^ (2 * n!l - i) = 0 * factorial(2 * n!l - i)

I .......

[13 0 = a!l

Sometimes the prover will simplify 0 * x to O, but in this case it is retained. We can

force this reduction using equate. A location reference retrieves the right side of formula -1,

which is then rewritten to O. The justification step is proved automatically using (grind).

Rerunning step: (EOUATE (! -i R) "0" T)

factorial rewrites factorial(2 * n!l - i)

to 2 * (factorial(2 * n!l - 2) * n!l) - factorial(2 * n!l - 2)

Equating two expressions and replacing,

this simplifies to:

sin_term_nonzero :

{-1} (-1) ^ (n!l - 1) * a!l ^ (2 * n!l - 1) = 0

I .......

[13 0 = a!l

Now we have an equality of the form x * y = O, which can be broken into cases

by muir-cases. The branch involving (-1) _-1 is simplified away by the strategy using

(assert).

Rerunning step: (MULT-CASES -i)

Analyzing cases for the relation in formula -i,

this simplifies to:

sin_term_nonzero :
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{-i} a!i ^ (2 * n!l - i) = 0

I .......

[i] 0 = a! i

Rerunning step: (USE "nzreal_exp")

Using lemma nzreal_exp,

this simplifies to:

sin_term_nonzero :

{-i} a!i ^ (2 * n!l - i) /= 0

[-23 a!i ^ (2 * n!l - i) = 0

I .......

[13 0 = a! i

Rerunning step: (ASSERT)

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.

The remainder of the proof is handled by appealing to a prelude lemma to reduce the

exponentiation term.

9.2 Proof of Lemma sin_term_next

Lemma sin_term_next is another simple property of the sin_term function, where term

i + 1 is written as an expression involving term i. It should be provable by expanding

functions and simplifying. Turning (grind) loose on this lemma, though, leads to some

unproductive deductions. We need to proceed more deliberately.

sin_term_next :

I .......

{i} FORALL (a: real, n: posnat):

sin_term(a) (n + i) =

sin_term(a)(n) * -I * a * a / ((2 * n + I) * 2 * n)

Rerunning step: (SKOSIMP*)

Repeatedly Skolemizing and flattening,

this simplifies to:

sin_term_next :

I .......

{i} sin_term(a!l)(n!l + I) =

sin_term(a!l)(n!l) * -i * a!l * a!l / ((2 * n!l + i) * 2 * n!l)

As before, we begin by eliminating the division operation.

Rerunning step: (CROSS-MULT)

Multiplying both sides of selected formulas by LHS/RHS divisor(s),
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this simplifies to:

sin_term_next :

I .......

{i} 2 * (sin_term(a!l)(l + n!l) * n!l) +

4 * (sin_term(a!l)(l + n!l) * n!l * n!l)

= -I * (sin_term(a!l)(n!l) * a!l * a!l)

After cross-multiplying, we find that the prover has applied the multiplicative distribu-

tivity property, as it usually does. We prefer to undo this action and can do so using

the factor strategy. After factoring all terms on the left side, the resulting expression is

protected from future distribution by wrapping in an application of the identity function.

Setting optional argument id? to T requests this action.

Rerunning step: (FACTOR 1L * T)

Extracting common factors from additive terms of selected expressions,

this simplifies to:

sin_term_next :

I .......

{i} sin_term(a!l)(l + n!l) * n!l * id(2 + 4 * n!l) =

-i * (sin_term(a!l)(n!l) * a!l * a!l)

Rerunning step: (EXPAND "sin_term")

Expanding the definition of sin_term,

this simplifies to:

sin_term_next :

I .......

{i} id(2 + 4 * n!l) *

(((-i) ^ n!l * a!l ^ (i + 2 * n!l)) / factorial(l + 2 * n!l))

• n!l

-i *

((-i) ^ (n!l - i) * a!l ^ (2 * n!l - i) / factorial(2 * n!l - i) *

a!l

• a! i)

We would like to cross-multiply again. On the right-hand side, though, the division is

embedded too deeply. We use permute-muir to reposition this factor at the right end of

the product (currently the third factor from the end).

Rerunning step: (PERMUTE-MULT 1R -3 R)

Permuting factors in selected expressions,

this simplifies to:

sin_term_next :

I .......

{i} id(2 + 4 * n!l) *
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(((-i) ^ n!l * a!l ^ (i + 2 * n!l)) / factorial(l + 2 * n!l))

• n!l

-i * a!l * a!l *

((-i) ^ (n!l - i) * a!l ^ (2 * n!l - i) / factorial(2 * n!l - i))

After this maneuver, cross-nmltiplication will eliminate all remaining divisions. Then

it will be in a form that (grind) can handle to finish off the proof. Note that this step

and the previous one can be handled automatically by the Field strategies of Mufioz and

Mayero [11].

Rerunning step: (CROSS-MULT)

Multiplying both sides of selected formulas by LHS/RHS divisor(s),

this simplifies to:

sin_term_next :

I .......

{i} (factorial(2 * n!l - i) * id(2 + 4 * n!l) * (-i) ^ n!l *

a!l ^ (I + 2 * n!l))

• n!l

-i *

(factorial(l + 2 * n!l) * (-i) ^ (n!l - I) * a!l ^ (2 * n!l - i) *

a!l

• a! 1)

Rerunning step: (GRIND)

factorial rewrites factorial(2 * n!l - i)

to 2 * (factorial(2 * n!l - 2) * n!l) - factorial(2 * n!l - 2)

id rewrites id(2 + 4 * n!l)

to 2 + 4 * n!l

expt rewrites expt((-l), n!l)

to (-i) * expt((-l), n!l - i)

^ rewrites (-i) ^ n!l

to (-i) * expt((-l), n!l - i)

expt rewrites expt(a!l, 2 * n!l - i)

to a!l * expt(a!l, 2 * n!l - 2)

expt rewrites expt(a!l, 2 * n!l)

to a!l * (a!l * expt(a!l, 2 * n!l - 2))

expt rewrites expt(a!l, 1 + 2 * n!l)

to a!l * (a!l * (a!l * expt(a!l, 2 * n!l - 2)))

^ rewrites a!l ^ (i + 2 * n!l)

to a!l * (a!l * (a!l * expt(a!l, 2 * n!l - 2)))

factorial rewrites factorial(2 * n!l)

to 4 * (factorial(2 * n!l - 2) * n!l * n!l) -

2 * (factorial(2 * n!l - 2) * n!l)

factorial rewrites factorial(l + 2 * n!l)

to 4 * (factorial(2 * n!l - 2) * n!l * n!l) -

2 * (factorial(2 * n!l - 2) * n!l)

+
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(8 * (factorial(2 * n!l - 2) * n!l * n!l * n!l) -

4 * (factorial(2 * n!l - 2) * n!l * n!l))

^ rewrites (-i) ^ (n!l - i)

to expt((-l), (n!l - i))

^ rewrites a!l ^ (2 * n!l - i)

to a!l * expt(a!l, 2 * n!l - 2)

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

9.3 Proof of Lemma sin_terms_alternate

Lemma sin_terms_alternate claims that successive terms in the series have alternating

signs. Some basic reasoning about inequalities will suffice to show this.

sin_terms_alternate :

I .......

{i} FORALL (a: real, n: posnat):

0 < a IMPLIES (sin_term(a)(n + i) < 0 IFF sin_term(a)(n) > 0)

Rerunning step: (SKOSIMP*)

Repeatedly Skolemizing and flattening,

this simplifies to:

sin_terms_alternate :

{-i} 0 < a!l

I .......

{i} (sin_term(a!l)(n!l + i) < 0 IFF sin_term(a!l)(n!l) > O)

Rerunning step: (REWRITE "sin_term_next")

Found matching substitution:

n: posnat gets n!l,

a: real gets a!l,

Rewriting using sin_term_next, matching in *,

this simplifies to:

sin_terms_alternate :

[-i] 0 < a!l

I .......

{i} (-i * (sin_term(a!l)(n!l) * a!l * a!l) / (4 * (n!l * n!l) + 2 * n!l)

< 0

IFF sin_term(a! i) (n! i) > O)

We will need the fact that a2 is positive, so we pause now to derive it. While there are

library lemmas to introduce this fact, we can easily obtain it by using mult-ineq to square
both sides of formula -1.

Rerunning step: (MULT-INEQ -i -i)

Multiplying terms from formulas -i and -i to derive a new inequality,

53



this simplifies to:

sin_terms_alternate :

{-i} 0 * 0 < a!l * a!l

[-2] 0 < a! i

.......

[13 (-i * (sin_term(a!l)(n!l) * a!l * all) / (4 * (n!l * n!l) + 2 * n!l)

< 0

IFF sin_term(a! i) (n! i) > O)

Rerunning step: (GROUND)

Applying propositional simplification and decision procedures,

this yields 2 subgoals:

sin_terms_alternate.l :

{-i} -i * (sin_term(a!l)(n!l) * a!l * a!l) / (4 * (n!l * n!l) + 2 * n!l) <

0

{-2} 0 < a!l * a!l

[-3] 0 < a!l

.......

{i} sin_term(a!l)(n!l) > 0

The (ground) step split IFF into two implications. On the current branch, we can start

by eliminating division.

Rerunning step: (CROSS-MULT -i)

Multiplying both sides of selected formulas by LHS/RHS divisor(s),

this simplifies to:

sin_terms_alternate.l :

{-1} -i * (sin_term(a!l)(n!l) * a!l * a!l) <

0 * (4 * (n!l * n!l) + 2 * n!l)

[-23 0 < a!l * a!l

[-33 0 < a! 1

.......

[i] sin_term(a!l)(n!l) > 0

It is apparent that if we divide formula -1 by -a 2, we will reduce it to the conclusion.

Using isolate-muir, we carry out this division, making sure to notify the strategy that

the divisor is a strictly negative term.

Rerunning step: (ISOLATE-MULT -i L 2 -)

Dividing by factors to isolate a term in formula -i,

this simplifies to:

sin_terms_alternate.l :

{-1}

{-2}

-1 * a!l * a!l < 0

2 * ((0 / (-i * (a!l * a!l))) * n!l) +

4 * ((0 / (-i * (a!l * a!l))) * n!l * n!l)

< sin_term(a!l)(n!l)
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[-3] 0 < a!l * a!l

[-4] 0 < a! 1

I .......

{1} sin_term(a!l)(n!l) > 0

Rerunning step: (ASSERT)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of sin_terms_alternate.l.

Simplification using (assert) was sufficient to complete that branch of the proof. The

other branch is proved in an identical manner.

sin_terms_alternate.2 :

{-1} sin_term(a!l)(n!l) > 0

{-2} 0 < a!l * a!l

[-3] 0 < a!l

I .......

{1} -1 * (sin_term(a!l)(n!l) * a!l * a!l) / (4 * (n!l * n!l) + 2 * n!l) <

0

Rerunning step: (CROSS-MULT i)

Multiplying both sides of selected formulas by LHS/RHS divisor(s),

this simplifies to:

sin_terms_alternate.2 :

[-1] sin_term(a!l)(n!l) > 0

[-2] 0 < a!l * a!l

[-3] 0 < a! 1

I .......

{1} -1 * (sin_term(a! 1)(n!1) * a!l * a!l) <

0 * (4 * (n!l * n!l) + 2 * n!l)

Rerunning step: (ISOLATE-MULT 1L 2 -)

Dividing by factors to isolate a term in formula I,

this simplifies to:

sin_terms_alternate.2 :

{-i} -1 * a!l * a!l < 0

{-2} sin_term(a!l)(n!l) > 0

[-3] 0 < a!l * a!l

[-43 0 < a! 1

I .......

{i} 2 * ((0 / (-i * (a!l * a!l))) * n!l) +

4 * ((0 / (-i * (a!l * a!l))) * n!l * n!l)

< sin_term(a!l)(n!l)

Rerunning step: (ASSERT)

Simplifying, rewriting, and recording with decision procedures,
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This completes the proof of sin_terms_alternate.2.

Q.E.D.

9.4 Proof of Lemma sin_terms_decr

Lemma sin_terms_decr makes a statement about the relative magnitudes of successive

terms in the power series for sine. Its proof was sketched in Figure 1.1 (refer to lemma (1.1)

on page i). Following is the fullproof of this lemma.

sin_terms_decr :

I .......

{i} FORALL (a: real, n: posnat):

0 < a AND a <= PI / 2 IMPLIES

abs(sin_term(a)(n)) > 2 * abs(sin_term(a)(n + i))

Rerunning step: (SKOSIMP*)

Repeatedly Skolemizing and flattening,

this simplifies to:

sin_terms_decr :

{-i} 0 < a!l

{-2} a!l <= PI / 2

I .......

{i} abs(sin_term(a!l)(n!l)) > 2 * abs(sin_term(a!l)(n!l + i))

Rerunning step: (REWRITE "sin_term_next")

Found matching substitution:

n: posnat gets n!l,

a: real gets a!l,

Rewriting using sin_term_next, matching in *,

this simplifies to:

sin_terms_decr :

[-i] 0 < a!l

[-2] a!l <= PI / 2

I .......

{i} abs (sin_term(a !i) (n !i) ) >

2 *

abs(-i * (sin_term(a!l)(n!l) * a!l * a!l) /

(4 * (n!l * n!l) + 2 * n!l))

Here we find the absolute value of an expression containing both multiplications and

division. If they were all multiplications, we could apply the lemma abs_mult repeatedly

to distribute the abs function over all the factors. We elect to take this route by first

converting the embedded division into multiplication by a reciprocal using recip-mult !.
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Note the use of the location reference (! i R (-> "abs") 1) to identify the desired

subexpression. The shorter alternative (! 1 R 2 l) achieves the same effect, but the for-

mer would be more resilient in the face of small changes to the expressions. Another

alternative would be (! i (-> "abs .... /")), which picks the desired instance of the abs

function from the two possibilities and burrows down to the division operator.

Rerunning step: (RECIP-MULT! (! 1R (-> "abs") i))

Converting division in selected terms to multiplication by reciprocal,

this simplifies to:

sin_terms_decr :

[-i] 0 < a!l

[-2] a!l <= PI / 2

I .......

{i} abs (sin_term(a !i) (n !i) ) >

2 *

abs((-1 * (sin_term(a!l)(n!1) * a!l * a!1)) *

(1 / (4 * (n!l * n!l) + 2 * n!1)))

Rerunning step: (APPLY (REPEAT (REWRITE "abs_mult")))

Applying

(REPEAT (REWRITE "abs_mult")),

this simplifies to:

sin_terms_decr :

[-i] 0 < a!l

[-23 a!l <= PI / 2

I .......

{i} abs (sin_term(a !i) (n !i) ) >

2 *

(abs(-l) * (abs(sin_term(a!l)(n!l)) * abs(a!l) * abs(a!l)) *

abs((l / (4 * (n!l * n!l) + 2 * n!l))))

Now we notice common terms on both sides of the inequality and decide to cancel them.

First we must reorder some factors so the common term is on the right.

Rerunning step: (PERMUTE-MULT 1R 3 R)

Permuting factors in selected expressions,

this simplifies to:

sin_terms_decr :

[-i] 0 < a!l

[-23 a!l <= PI / 2

I .......

{i} abs(sin_term(a!l)(n!l)) >

2 * abs(-l) * abs(a!l) * abs(a!l) *

abs((l / (4 * (n!l * n!l) + 2 * n!l)))

• abs(sin_term(a!l)(n!l))
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Logically, we should be able to cancel now, but the cancellation strategy requires both

sides to have the same form, i.e., x * y in this case. So we first multiply the left side by 1

using op-ident, after which we may invoke cancel.

Rerunning step: (0P-IDENT 1L i*)

Applying identity operation to rewrite selected expression,

this simplifies to:

sin_terms_decr :

[-i] 0 < a!l

[-2] a!l <= PI 1 2

I .......

{i} (i * abs(sin_term(a!l)(n!l)) >

2 * abs(-1) * abs(a!l) * abs(a!l) *

abs((1 / (4 * (n!l * n!l) + 2 * n!l)))

• abs(sin_term(a!l)(n!l)))

Rerunning step: (CANCEL i)

Canceling terms from both sides of selected formulas,

this yields 2 subgoals:

sin_terms_decr.l :

[-i] 0 < a!l

[-23 a!l <= PI / 2

I .......

{1} 1 >

2 * abs(-1) * abs(a!l) * abs(a!l) *

abs((l / (4 * (n!l * n!l) + 2 * n!l)))

Having canceling the common factors, we may now expand abs and simplify.

Rerunning step: (EXPAND "abs")

Expanding the definition of abs,

this simplifies to:

sin_terms_decr.l :

[-1] 0 < a!l

[-23 a!l <= PI / 2

I .......

{1} 1 >

2 *

((I / (4 * (n!l * n!l) + 2 * n!l)) *

IF a!l < 0 THEN -a!l ELSE a!l ENDIF

• IF a!l < 0 THEN -a!l ELSE a!l ENDIF

• --i)

Rerunning step: (ASSERT)

Simplifying, rewriting, and recording with decision procedures,

this simplifies to:

sin_terms_decr.l :
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[-1] 0 < a!l

[-2] a!l <= PI 1 2

I .......

{i} i > 2 * ((1 / (4 * (n!l * n!l) + 2 * n!l)) * --i * a!l * a!l)

Again, we find an embedded division we would like to move to the outside so we can

apply cross-muir.

Rerunning step: (PERMUTE-MULT i R 2 R)

Permuting factors in selected expressions,

this simplifies to:

sin_terms_decr.l :

[-i] 0 < a!l

[-23 a!l <= PI / 2

I .......

{i} i > 2 * --I * a!l * a!l * (i / (4 * (n!l * n!l) + 2 * n!l))

Rerunning step: (CROSS-MULT i)

Multiplying both sides of selected formulas by LHS/RHS divisor(s),

this simplifies to:

sin_terms_decr.l :

[-i] 0 < a!l

[-23 a!l <= PI / 2

I .......

{i} i * (4 * (n!l * n!l) + 2 * n!l) > 2 * (--i * a!l * a!l)

We have manipulated formula 1 close to the form we need. Now we turn our attention

to the antecedents. To establish the conclusion it suffices to show that n(2n + 1) > a 2.

Because n is a positive integer, we must have a 2 < 3. But a _< re/2, so a 2 is bounded by

rc2/4, which numerically is around 2.467.

We begin by squaring both sides of formula -2 to derive a new relationship between a 2

and _2.

Rerunning step: (MULT-INEQ -2 -2)

Multiplying terms from formulas -2 and -2 to derive a new inequality,

this simplifies to:

sin_terms_decr.l :

{-i} a!l * a!l <= (PI / 2) * (PI / 2)

[-2] 0 < a!l

[-3] a!l <= PI / 2

I .......

[i] i * (4 * (n!l * n!l) + 2 * n!l) > 2 * (--i * a!l * a!l)

Next we need to bring in facts about the numerical value of re. The upper bound PI_ub

will be of use.
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Rerunningstep: (TYPEPRED"PI")
Addingtype constraints for PI,
this simplifies to:
sin_terms_decr.l:

{-i} PI >= 0

{-2} PI > 0

{-3} PI >= PI_Ib

{-4} PI <= PI_ub

[-5] a!l * a!l <= (PI / 2) * (PI / 2)

[-6] 0 < a!l

[-?] a!l <= PI / 2

.......

[i] i * (4 * (n!l * n!l) + 2 * n!l) > 2 * (--i * a!l * a!l)

Rerunning step: (EXPAND "Pl_ub")

Expanding the definition of Pl_ub,

this simplifies to:

sin_terms_decr.l :

[-i] PI >= 0

[-2] PI > 0

[-3] PI >= PI_Ib

{-4} PI <= 315 / i00

[-5] a!l * a!l <= (PI / 2) * (PI / 2)

[-6] 0 < a!l

[-?] a!l <= PI / 2

.......

[i] 1 * (4 * (n!l * n!l) + 2 * n!l) > 2 * (--i * a!l * a!l)

Squaring the upper bound on z in formula -4 gives us the last inequality we need to

complete the chain of reasoning.

Rerunning step: (MULT-INEQ -4 -4)

Multiplying terms from formulas -4 and -4 to derive a new inequality,

this simplifies to:

sin_terms_decr.l :

{-1} PI * PI <= (315 / 100) * (315 / 100)

[-2] PI >= 0

[-3] PI > 0

[-4] PI >= PI_Ib

[-5] PI <= 315 / 100

[-6] a!l * a!l <= (PI / 2) * (PI / 2)

[-7] 0 < a!l

[-8] a!l <= PI / 2

.......

[i] 1 * (4 * (n!l * n!l) + 2 * n!l) > 2 * (--i * a!l * a!l)

Having deriveda numericalbound on a2indirectlythrough_r2/4givestheproverenough
informationto seethatthe conclusionholds.
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Rerunning step: (ASSERT)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of sin_terms_decr.l.

sin_terms_decr.2 :

[-i] 0 < a!l

[-2] a!l <= PI / 2

I .......

{i} abs(sin_term(a!l)(n!l)) > 0

{2} (abs (sin_term(a !I) (n !i) ) >

2 *

(abs((l / (4 * (n!l * n!l) + 2 * n!l))) * abs(-l) * abs(a!l) *

abs (a! i) )

• abs(sin_term(a! i) (n! i)))

Rerunning step: (USE "sin_term_nonzero")

Using lemma sin_term_nonzero,

this simplifies to:

sin_terms_decr.2 :

{-i} 0 /= a!l IMPLIES sin_term(a!l)(n!l) /= 0

[-2] 0 < a!i
[-3] a!l <= PI / 2

I .......

[i] abs(sin_term(a!l)(n!l)) > 0

[2] (abs (sin_term(a !I) (n !i) ) >

2 *

(abs((l / (4 * (n!l * n!l) + 2 * n!l))) * abs(-l) * abs(a!l) *

abs (a! 1) )

• abs(sin_term(a! i) (n!l)))

Rerunning step: (GRIND NIL :REWRITES ("abs"))

abs rewrites abs(sin_term(a!l)(n!l))

to -sin_term(a!l)(n!l)

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of sin_terms_decr.2.

0 .E.D.

The remainder of the proof is concerned with a side condition spawned by the earlier

cancellation step. It can be completed easily using conventional proof rules.

Again, it is worth noting that several steps in this proof can be handled more automat-

ically by the Field [11] strategies.
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Chapter 10

Discussion

The following sections discuss the results we have obtained thus far.

10.1 Related Work

Shankar [15] sketches an approach to the enhanced use of rewrite libraries for arithmetic

simplification. While these methods are certainly helpful, we believe they need to be aug-

mented by proof interaction of the sort we advocate.

Tactic-based proving has been used extensively in major interactive provers such as

HOE [8], Isabelle [14] and Coq [9]. Although most of this activity has been devoted to

low-level automation, there also have been higher level tactics developed. An example is a

semi-decision procedure for reals [11], which had been developed originally for Coq and was

recently ported to PVS.

Several researchers have developed PVS strategy packages for specialized types of prov-

ing. Examples include a mechanization of the TRIO temporal logic [1], a proof assistant for

the Duration Calculus [17], and the verification of simple properties for state-based require-

meats models [5]. A notable example is Archer's accomlt of the TAME effort [2], which has

a good discussion on developing PVS strategies tbr timed automata models and using them

to promote "human-style" theorem proving.

ACL2 [10] supports tactic-based proving through a Common Lisp framework and a

notion of events. While ACL2 normally conducts fully automatic proofs, it also contains a

mechanism for low level interaction. Included are commands for simple navigation within

expression trees using actions such as "move forward one term." Other commands enable

the current term thus reached to be used in various ways.

What differentiates our work from these other efforts is an emphasis on interactive proof,

rich features for extracting terms from the working sequent, and flexible mechanisms for

exploiting such terms. Many tactic approaches stress control issues, often neglecting the

equally important data issues. Only by placing nontrivial term-access facilities at the user

interface can the full potential of interactive tactics be realized.
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10.2 Conclusions

The arithmetic package has been used experimentally at NASA Langley and made available

to the PVS user community. Various lemmas from Langley's trigonometry library [12]

have been reproved as test cases, some of which were highlighted in Chapter 9. A new

real-analysis library under development is currently using the Manip package. Further

experimentation is underway to gauge effectiveness and suggest new strategies.

Tactic-based theorem proving still holds substantial promise for automating domain-

specific reasoning. In the case of PVS, much effort has gone into developing decision pro-

cedures and rewrite rule capabilities. While these are undoubtedly valuable, there is still

ample room for other advances, particularly those that can leverage the accumulated knowl-

edge of experienced users of deduction systems. Such users are well poised to introduce the

wide variety of deductive middleware needed by the formal methods and computational

logic communities. Our tools and techniques aim to further this goal.

10.3 Future Plans

Future activities will focus on refining the techniques and introducing new strategy packages

for additional domains. One domain of interest is reasoning about sets, especially finite sets.

We expect that ideas from the arithmetic strategies can be readily adapted.

Several other topics are potential areas for enhancement:

• Higher-level arithmetic strategies

• Better coverage for the syntactic features of the PVS language

• New types of extended expressions

• Proof file annotations to document extended expression accesses
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